• Title/Summary/Keyword: 비모수적 분류

Search Result 52, Processing Time 0.036 seconds

On Practical Choice of Smoothing Parameter in Nonparametric Classification (베이즈 리스크를 이용한 커널형 분류에서 평활모수의 선택)

  • Kim, Rae-Sang;Kang, Kee-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.283-292
    • /
    • 2008
  • Smoothing parameter or bandwidth plays a key role in nonparametric classification based on kernel density estimation. We consider choosing smoothing parameter in nonparametric classification, which optimize the Bayes risk. Hall and Kang (2005) clarified the theoretical properties of smoothing parameter in terms of minimizing Bayes risk and derived the optimal order of it. Bootstrap method was used in their exploring numerical properties. We compare cross-validation and bootstrap method numerically in terms of optimal order of bandwidth. Effects on misclassification rate are also examined. We confirm that bootstrap method is superior to cross-validation in both cases.

Probabilistic Reservoir Inflow Forecast Using Nonparametric Methods (비모수적 기법에 의한 확률론적 저수지 유입량 예측)

  • Lee, Han-Goo;Kim, Sun-Gi;Cho, Yong-Hyon;Chong, Koo-Yol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.184-188
    • /
    • 2008
  • 추계학적 시계열 분석은 크게 수문자료의 장기간 합성과 실시간 예측으로 구분해 볼 수 있다. 장기간 합성은 주로 수문자료의 추계적 특성을 반영한 수자원 시스템의 운영율 개발에 이용되어 왔다. 반면에 실시간 예측은 수자원 시스템의 순응적(adaptive) 관리에 적용되고 있다. 두 개념의 차이로 전자는 시계열 자료를 합성하여 발생 가능한 모든 수문조합을 얻고자 하는 것이라면 후자는 전 시간의 수문량을 조건으로 하는 다음 시간의 값을 순응적으로 예측하는 것이라 할 수 있다. 수문자료의 합성과 예측에는 크게 결정론적, 확률론적 방법의 두 가지 대별될 수 있다. 결정론적 모델링 방법에는 인공신경망이나 Fuzzy 기법 등을 이용할 수 있으며, 확률론적 방법에는 ARMAX 등의 모수적 기법과 k-NN(k-nearest neighbor bootstrap resampling), KDE(kernel density estimates), 추계학적 인공신경망 등의 비모수적 기법으로 분류할 수 있다. 본 연구에서는 대표적 비모수적 기법인 k-NN를 이용하여 충주댐을 대상으로 월 및 일 유입량 자료의 예측 정도를 살펴보았다. 전 시간 관측치를 조건으로 하는 다음 시간의 조건부 확률분포를 구하여 평균값을 계산한 후 관측치와 비교함으로써 모형의 정도를 살펴보았다. 그리고 실시간 저수지 운영에 이 기법의 활용성과 장단점도 살펴보았다. 모형개발 절차로 모형의 보정을 거쳐 검증을 실시하였다. 결론적으로 월 및 일 유입량 예측에 k-NN 기법이 실무적으로 적용될 수 있었으며, 장점으로는 k-NN 기법이 다른 기법보다 모델링 절차가 비교적 쉬워 저수지 운영 최적화 등 타 시스템과의 연계에 수월함이 인식되었다.

  • PDF

IPAA의 효과를 고찰하기 위한 분류분석방법들의 비교연구

  • Lee, Seung-Yeon;Lee, Eun-Ju;Choe, Ho-Sik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.291-298
    • /
    • 2005
  • 지속성 외래 복막투석은 말기 신부전 환자들에게 널리 시행하는 신 대체 요법으로, 복막투석 환자에게서 주된 합병증으로 일어나는 단백질-열량 영양실조를 치료하기 위하여 아미노산을 복강 내로 주입하는 치료방법이다. 이현석 등(2004)의 연구에서는 아미노산 복막 투석액(IPAA)이 영양실조 환자들에게 실제로 영양상태에 미치는 영향을 평가하기 위하여 지속성 외래 복막투석 환자 43명을 12개월 동안 3개월 주기로 관측하여 얻어낸 반복측정자료를 바탕으로 IPAA의 효과 여부에 따라 반응군과 비반응군을 분류하였다. 본 논문에서는 이러한 두 그룹을 효과적으로 분류할 수 있는 분류기준변수들을 찾아내고 이 분류기준변수의 값을 바탕으로 새로운 환자에게 IPAA의 투여 여부를 진단할 수 있는 여러 분류방법들을 고찰하여 비교 연구하였다. 모수적인 방법으로 선형판별분석, 이차판별분석 및 로지스틱 판별분석을 소개하고 비모수적인 방법으로 support vector machine(SVM)을 소개하여 분류분석의 결과를 비교하여 두 그룹을 최소한의 오류로 분류하는 방법을 제안하였다.

  • PDF

Voice Classification Algorithm for Sasang Constitution (음성을 이용한 사상체질 분류 보조 알고리즘)

  • Kang, Jae-Hwan;Lee, Hae-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1982_1983
    • /
    • 2009
  • 본 연구에서는 기존의 특정 음성 변수에 대한 모수적 통계 접근 방법을 탈피하고 새로운 음성을 이용한 사상체질 분류 알고리즘을 개발하고자 먼저 5개의 모음과 2개의 문장으로 이루어진 총 120명의 여성 음성 데이터 수집하였다. 이후 다양한 음성 신호 분석 방법과 툴을 이용하여 총 134개의 음성 변수를 추출하였다. 각 변수에서는 체질별 최대값들의 최소값, 최소값들의 최대값을 이용해 4개의 조건 변수를 새로 생성하고 이를 관리하기 위한 메모리와 체질 점수 개념을 도입하여 비모수적인 통계 방법을 기반으로 한 분류 알고리즘을 개발하였다. 알고리즘 성능 테스트를 위해 10-fold cross 검정테스트를 실시하였으며 본 알고리즘은 최종적으로 이진 분류에서 진단률 41.5%와 정확률 79.5%를 가지는 것으로 확인되었다.

  • PDF

A nonparametric sequential test based on observations in groups (집단관측치에 의한 비모수적 축차검정에 관한 연구)

  • 박창순
    • The Korean Journal of Applied Statistics
    • /
    • v.1 no.2
    • /
    • pp.66-81
    • /
    • 1987
  • A new nonparametric sequential testing procedure is proposed in the paper. Sequential observations are divided into equally sized groups and a nonparametric statistic, which is appropriate for testing the given hypotheses, is obtained from each group. Then Wald's sequential test is applied for the case where the log probability ratio statistic is replaced by the nonparametric statistic. The properties of such test are evaluated approximately by the Wiener process.

Nonparametric Bayesian Statistical Models in Biomedical Research (생물/보건/의학 연구를 위한 비모수 베이지안 통계모형)

  • Noh, Heesang;Park, Jinsu;Sim, Gyuseok;Yu, Jae-Eun;Chung, Yeonseung
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.867-889
    • /
    • 2014
  • Nonparametric Bayesian (np Bayes) statistical models are popularly used in a variety of research areas because of their flexibility and computational convenience. This paper reviews the np Bayes models focusing on biomedical research applications. We review key probability models for np Bayes inference while illustrating how each of the models is used to answer different types of research questions using biomedical examples. The examples are chosen to highlight the problems that are challenging for standard parametric inference but can be solved using nonparametric inference. We discuss np Bayes inference in four topics: (1) density estimation, (2) clustering, (3) random effects distribution, and (4) regression.

Bayesian Model based Korean Semantic Role Induction (베이지안 모형 기반 한국어 의미역 유도)

  • Won, Yousung;Lee, Woochul;Kim, Hyungjun;Lee, Yeonsoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.111-116
    • /
    • 2016
  • 의미역은 자연어 문장의 서술어와 관련된 논항의 역할을 설명하는 것으로, 주어진 서술어에 대한 논항인식(Argument Identification) 및 분류(Argument Labeling)의 과정을 거쳐 의미역 결정(Semantic Role Labeling)이 이루어진다. 이를 위해서는 격틀 사전을 이용한 방법이나 말뭉치를 이용한 지도 학습(Supervised Learning) 방법이 주를 이루고 있다. 이때, 격틀 사전 또는 의미역 주석 정보가 부착된 말뭉치를 구축하는 것은 필수적이지만, 이러한 노력을 최소화하기 위해 본 논문에서는 비모수적 베이지안 모델(Nonparametric Bayesian Model)을 기반으로 서술어에 가능한 의미역을 추론하는 비지도 학습(Unsupervised Learning)을 수행한다.

  • PDF

Bayesian Model based Korean Semantic Role Induction (베이지안 모형 기반 한국어 의미역 유도)

  • Won, Yousung;Lee, Woochul;Kim, Hyungjun;Lee, Yeonsoo
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.111-116
    • /
    • 2016
  • 의미역은 자연어 문장의 서술어와 관련된 논항의 역할을 설명하는 것으로, 주어진 서술어에 대한 논항 인식(Argument Identification) 및 분류(Argument Labeling)의 과정을 거쳐 의미역 결정(Semantic Role Labeling)이 이루어진다. 이를 위해서는 격틀 사전을 이용한 방법이나 말뭉치를 이용한 지도 학습(Supervised Learning) 방법이 주를 이루고 있다. 이때, 격틀 사전 또는 의미역 주석 정보가 부착된 말뭉치를 구축하는 것은 필수적이지만, 이러한 노력을 최소화하기 위해 본 논문에서는 비모수적 베이지안 모델(Nonparametric Bayesian Model)을 기반으로 서술어에 가능한 의미역을 추론하는 비지도 학습(Unsupervised Learning)을 수행한다.

  • PDF

Palatability Grading Analysis of Hanwoo Beef using Sensory Properties and Discriminant Analysis (관능특성 및 판별함수를 이용한 한우고기 맛 등급 분석)

  • Cho, Soo-Hyun;Seo, Gu-Reo-Un-Dal-Nim;Kim, Dong-Hun;Kim, Jae-Hee
    • Food Science of Animal Resources
    • /
    • v.29 no.1
    • /
    • pp.132-139
    • /
    • 2009
  • The objective of this study was to investigate the most effective analysis methods for palatability grading of Hanwoo beef by comparing the results of discriminant analysis with sensory data. The sensory data were obtained from sensory testing by 1,300 consumers evaluated tenderness, juiciness, flavor-likeness and overall acceptability of Hanwoo beef samples prepared by boiling, roasting and grilling cooking methods. For the discriminant analysis with one factor, overall acceptability, the linear discriminant functions and the non-parametric discriminant function with the Gaussian kernel were estimated. The linear discriminant functions were simple and easy to understand while the non-parametric discriminant functions were not explicit and had the problem of selection of kernel function and bandwidth. With the three palatability factors such as tenderness, juiciness and flavor-likeness, the canonical discriminant analysis was used and the ability of classification was calculated with the accurate classification rate and the error rate. The canonical discriminant analysis did not need the specific distributional assumptions and only used the principal component and canonical correlation. Also, it contained the function of 3 factors (tenderness, juiciness and flavor-likeness) and accurate classification rate was similar with the other discriminant methods. Therefore, the canonical discriminant analysis was the most proper method to analyze the palatability grading of Hanwoo beef.

A Geostatistical Study Using Qualitative Information for Multiple Rock Classification -1. Theory (다분적 암반분류를 위한 정성적 자료의 지구통계학적 연구 1.이론)

  • 유광호
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.71-78
    • /
    • 1995
  • In this paper, a study was performed on classifying a rock mass into multiple classes as in rock mass classification systems, such as RMR system and Q system etc. In a situation with only limited quantitative data available, it was sought to employ a way of incorporating qualitative data in a systematical and reasonable manner. It is based on the realm of Geostatistics. In particular, indicator kriging technique, which is one of non-parametric approaches, was used. As a selection criterion for an optimal classification, the cost of errors was adopted. As a result, the binary rock classification method developed before was extended and generalized for multiple rock classification with its total number of classes unlimited.

  • PDF