• Title/Summary/Keyword: 비례전자 압력제어 밸브

Search Result 7, Processing Time 0.021 seconds

Pressure control of hydraulic servo system using proportional control valve (비례전자밸브를 사용한 유압서보계의 압력제어)

  • Yang, Kyong-Uk;Oh, In-Ho;Lee, Ill-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1229-1240
    • /
    • 1997
  • The purpose of this study is to build up control scheme that promptly control pressure in a hydraulic cylinder having comparatively small control volume, using a PCV (proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is too large considering the small volume of the hydraulic cylinder and the time delay of response of the PCV is comparatively long. Considering the above-mentioned characteristics of the object pressure control system, in this study, control system is designed with two degree of freedom control scheme that is composed by adding a feed-forward control path to I-PDD$^{2}$ control system, and a reference model is used on the decision of control parameters. And through some experiments on the control system with FF-I-PDD$^{2}$ controller, the validity of this control method has been confirmed.

Analysis of dynamic characteristics of proportional control valve for auto-steering tractor (자동 조향 트랙터용 비례제어밸브의 동특성 분석)

  • Min, Yee-Seo;Kim, Yong-Joo;Kim, Wan-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.349-359
    • /
    • 2022
  • The aim of this study is to analyze the dynamic characteristics of proportional control valves according to various working conditions as a basic study for developing proportional control valves for auto-steering tractors. The dynamic characteristics of proportional valves were measured using hydraulic characteristics measurement system, and the power was analyzed using measured flow rate and pressure data. As the experimental conditions, the tractor engine speed and steering angle was selected as the main variables, and the experiment was performed on urethane road conditions. As a result, it was found that the flow rate, pressure, and power of the proportional control valve increased as the tractor engine speed and steering angle increased. In particular, as the steering angle increased at the same engine speed, the flow rate, pressure, and power tended to increase by up to 190%, 172%, and 273%, respectively. Similarly, as the engine speed increased at the same steering angle, the flow rate, pressure, and power tended to increase up to 161%, 122%, and 168%, respectively. Therefore, it can be seen that the steering angle has a higher influence on the dynamic characteristics of the proportional control valve than the engine speed.

Study on Improvement in Steering Performance of an Auto-Guided Tractor using a Laboratory-made HILS simulator (HILS 시뮬레이터를 이용한 자율주행 트랙터 조향시스템 개선 연구)

  • Lee, Chang-Joo;Han, Xiongzhe;Jeon, Chanwoo;Kim, Junghoon;Kim, Hakjin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.19-19
    • /
    • 2017
  • 자율주행 트랙터를 위한 트랙터 조향제어는 일반적으로 전자모터를 이용한 EPS(Electric Power Steering) 시스템을 스티어링 휠에 연결하여 회전변위를 변경하고 그 결과 오비트롤(Orbitrol) 밸브의 토출유량을 바꾸고 호스로 연결된 조향실린더의 변위를 조절하여 최종적으로 전방 타이어의 방향각을 변경하면서 이루어진다. 이러한 조향방식은 시스템 구조상 조향실린더와 오비트롤 밸브가 상대적으로 멀리 떨어져 있으며, 밸브 특성상 약 ${\pm}5^{\circ}$의 오버랩이 포함되어 있다. 또한, EPS의 전자모터는 관성력, 마찰, 백래시 등의 영향을 가진다. 이와 같은 복합적인 영향은 조향 응답을 느리게 만들어 상대적으로 빠른 속도에서 주행에서 추종성능이 떨어지는 문제가 발생한다. 본 연구에서는 자율주행 트랙터의 조향성능 개선 연구의 일환으로 조향 HILS 시뮬레이터를 설계제작하여 조향 성능의 요인을 실험적으로 구명하고자 하였으며 이를 바탕으로 조향 시스템의 설계개선 방안을 수립하고자 하였다. 시뮬레이터는 동양물산 80 마력급 TX803 트랙터에 사용되는 오픈센터방식의 오비트롤 유압회로 시스템을 기어펌프가 장착된 AC모터로 구동되게 구성하였으며, 유량은 모터의 주파수를 조절 회전속도를 조절 변경하였다. 추가적으로 EPS와 오비트롤 조합의 조향성능을 비교 및 개선하기 위해 비례제어밸브(PVG 32, Danfoss)를 추가 장착하였다. 실제 트랙터 조향 시 나타나는 마찰저항을 모사하기 위해 부하 실린더를 구성하였으며, 조향 실린더의 부하의 크기는 부하 실린더를 폐회로를 구성하고 유량비례제어밸브를 이용한 유로의 개구량 조절을 통해 부하의 크기를 약 4000 N 까지 증가시킬 수 있도록 하였다. EPS와 비례제어밸브를 제어하기 위해 CANoe 8.0 소프트웨어를 이용하여 CAN통신 기반 가상 조향ECU를 구성하였으며 오비트롤의 기본 성능을 확인하기 위해 조향휠에 따른 실린더 동특성 및 계단 추종성능을 비례제어밸브와 비교하였다. 오비트롤 밸브는 약 ${\pm}5^{\circ}$이상 동작 시 실린더 압력이 상승하기 시작하였으며, 이후 약 ${\pm}10^{\circ}$이상 동작 시 조향실린더가 동작하기 시작하였다. 계단 추종성능실험에서는 비례제어밸브가 약 2배 이상의 응답개선을 나타냈다. 자율주행 경로추종 성능을 향상시키기 위해서는 순간적인 출력밀도가 높은 비례제어밸브를 통해 응답개선이 필요한 것으로 나타났다.

  • PDF

Pressure Control of Electro-Hydraulic Servo System by Two-Degree of Freedom Control Scheme (2자유도 제어기법에 의한 전자 유압 서보계의 압력제어)

  • 양경욱;오인호;이일영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.110-120
    • /
    • 1996
  • The purpose of this study is to build up the control scheme that promptly controls the pressure in a hydraulic cylinder having small control volume, using a PCV(proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is so large considering comparatively small volume of the hydraulic cylinder and the time delay of response of PCV is long. Considering the above-mentioned characteristics of the object pressure control system, in this study, a control system is designed with two degree of freedom scheme that is composed by adding a feed-forward control path to I-PD control system, and the reference model is used to decide control parameters. And through some experiments on FF-I-PD, the validity of this control method is confirmed.

  • PDF

Verification of Control Algorithm for Removing Oil Contaminant Factor from Proportional Pressure Control Valve (전자식 비례 압력제어밸브 내 오일 오염 입자 제거 제어 알고리즘 검증)

  • Cheon, Su Hwan;Park, Jin Kam;Jang, Kyoung Je;Sim, Sung Bo;Jang, Min Ho;Lee, Jin Woong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • An electro proportional pressure control valve is mainly used to control the clutch of an agricultural tractor's automatic transmission. During transmission, the operating, hydraulic oil is mix with many kinds of contaminants. The contaminants can be trapped between the valve body and spool of the proportional pressure control valve leading to abnormal operating conditions and finally critical damage to the transmission hydraulic system. The present study aimed to verify the valve control algorithm as a basic study of developing control logic that removes contaminants between the spool and the body of the proportional pressure control valve. To develop the algorithm, MATLAB/SIMULINK was used. PWM method was used to control the applied solenoid coil current. The effectiveness of the algorithm was verified by comparing the actual pressure of the normal valve with the actual pressure of the abnormal valve. Based on the present study findings, when the algorithm was applied, the response of the valve pressure according to the current became stable and oil contaminated particles were removed. In the future study, the control algorithm will be optimized for the stability of the proportional pressure reducing valve, and it will be verified in consideration with the driving of the clutch.

Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve (전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

Design of a Pressure Feedback Controller for Hydraulic Excavator Pilot System with EPPRVs (EPPRV 적용 굴착기 파일롯 시스템 압력 피드백 제어기 설계)

  • Seungjin Yoo;Cheol-Gyu Park;Seung-Han You
    • Journal of Drive and Control
    • /
    • v.21 no.3
    • /
    • pp.9-19
    • /
    • 2024
  • Many modern hydraulic excavators now use EPPRVs (Electronic Proportional Pressure Reducing Valves) in their pilot systems to control the spool displacement of the main hydraulic system. However, the performance of these systems is often limited by factors such as magnetic hysteresis, mechanical wear, and transient responses influenced by operating conditions and component installation. This paper presents a pressure feedback controller for excavator pilot systems that utilize EPPRVs. This controller significantly reduces steady-state pressure control errors and mitigates the hysteresis effects commonly seen in traditional open-loop systems. To achieve this, we integrated EPPRVs with the main hydraulic valve and injected a chirp signal into the solenoid current. By doing so, we were able to measure the frequency response of the pilot system across different operating pressures and estimate the system dynamics model. Using these models, we designed a set of PI pressure feedback controllers that are guaranteed to be stable. These controllers were then integrated with a gain scheduler based on a lookup table. Experimental results demonstrate that when the developed pressure feedback controller is incorporated into the conventional open-loop controller, it effectively reduces steady-state pressure control errors and mitigates hysteresis.