DOI QR코드

DOI QR Code

Design of a Pressure Feedback Controller for Hydraulic Excavator Pilot System with EPPRVs

EPPRV 적용 굴착기 파일롯 시스템 압력 피드백 제어기 설계

  • Seungjin Yoo (Department of Industrial Machine DX, Korea Institute of Machinery and Materials) ;
  • Cheol-Gyu Park (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Seung-Han You (School of Mechanical Engineering, Korea University of Technology and Education)
  • 유승진 ;
  • 박철규 ;
  • 유승한
  • Received : 2024.06.25
  • Accepted : 2024.08.21
  • Published : 2024.09.01

Abstract

Many modern hydraulic excavators now use EPPRVs (Electronic Proportional Pressure Reducing Valves) in their pilot systems to control the spool displacement of the main hydraulic system. However, the performance of these systems is often limited by factors such as magnetic hysteresis, mechanical wear, and transient responses influenced by operating conditions and component installation. This paper presents a pressure feedback controller for excavator pilot systems that utilize EPPRVs. This controller significantly reduces steady-state pressure control errors and mitigates the hysteresis effects commonly seen in traditional open-loop systems. To achieve this, we integrated EPPRVs with the main hydraulic valve and injected a chirp signal into the solenoid current. By doing so, we were able to measure the frequency response of the pilot system across different operating pressures and estimate the system dynamics model. Using these models, we designed a set of PI pressure feedback controllers that are guaranteed to be stable. These controllers were then integrated with a gain scheduler based on a lookup table. Experimental results demonstrate that when the developed pressure feedback controller is incorporated into the conventional open-loop controller, it effectively reduces steady-state pressure control errors and mitigates hysteresis.

Keywords

Acknowledgement

이 연구는 2024년도 산업통상자원부의 연구비 (과제번호: 20018414) 의 지원에 의하여 수행되었음을 밝힙니다.

References

  1. Kim, K. Y., Jang, D. S., & Ahn, H. S. (2008). A study on the bucket tip's position control for the intelligent excavation system. Journal of Drive and Control, 5(4), 89-94.
  2. Cho, J.-H., Na, S.-J., Kim, M.-S., & Park, M.-K. (2022). Development of a workload index for monitoring durability test of an excavator. Journal of Drive and Control, 19(4), 29-35.
  3. Kim, Y. J., & Seo, M. K. (2023). Technological trends in safety solutions for construction equipment. Journal of Drive and Control, 20(2), 7-14.
  4. Jeong, H. H., Shin, Y. I., Lee, J. H., & Cho, K. Y. (2023). A study of weighing system to apply into hydraulic excavator with CNN. Journal of Drive and Control, 20(4), 133-139.
  5. Lee, K. S., Kim, K. S., Jeong, J. B., Pak, E. S., Koh, J. I., Park, J. J., & Joo, S. H. (2024). Development and performance evaluation of Machine Control Kit mountable to general excavators. Journal of Drive and Control, 21(1), 31-37.
  6. Boza, J. (2016). Design and Validation of an Electro-Hydraulic Pressure-Control Valve and Closed-Loop Controller. Dissertations. 2490. https://scholarworks.wmich.edu/dissertations/249
  7. Niebergall, M., & Ziegler, H. (2024). Compact fluid power control unit with independent metering. In Proceedings of the 14th International Fluid Power Conference, Dresden
  8. Bissbort, M., Schmidt, T., Ruxton, D., Wickboldt, S., & Dupre, B. (2022). Digital proportional control with integrated LVDT position feedback. In Proceedings of the 13th International Fluid Power Conference (June 13-15, 2022, Aachen, Germany).
  9. Dell'Amico, A., & Krus, P. (2016). Modelling and experimental validation of a nonlinear proportional solenoid pressure control valve. International Journal of Fluid Power, 17(2), 90-101.
  10. Vaughan, N. D., & Gamble, J. B. (1996). The modeling and simulation of a proportional solenoid valve. ASME Journal of Dynamic Systems, Measurement, and Control, 118(1), 120-125.
  11. Khan, H. A., & Yoon, S. N. (2019). Modeling and simulation of an EPPR valve coupled with a spool valve. Journal of Drive and Control, 16(2), 30-35
  12. Im, Y. H., Jeong, E. J., Park, Y. S., & Ahn, K. K. (2019). A basic study on optimization of proportional solenoid design parameters of EPPR valve for construction machinery. In Proceedings of the Conference of the Korean Society of Fluid Power and Construction Machinery, Jeju.
  13. Yoon, J. H., Nhat, N. M., Lee, H. S., Youn, J. W., Kim, D. J., Lee, D. W., & Ahn, K. K. (2016). Optimizations of design parameters of an EPPR valve solenoid using artificial neural network. In Proceedings of the Conference of the Korean Society of Fluid Power and Construction Machinery, Seoul.
  14. Jung, S., Choi, S. B., Ko, Y., Kim, J., & Lee, H. (2019). Pressure control of an electro-hydraulic actuated clutch via novel hysteresis model. Control Engineering Practice, 91, 104112. https://doi.org/10.1016/j.conengprac.2019.104112
  15. Balau, A.-E., Caruntu, C.-F., & Lazar, C. (2011). Simulation and control of an electro-hydraulic actuated clutch. Mechanical Systems and Signal Processing, 25(6), 1911-1922. https://doi.org/10.1016/j.ymssp.2011.01.009
  16. Hydac. RS160-EH open center sectional directional control valve, Retrived from "https://www.hydac.com/media/local_resources_usa/downloads/catalog/mobile_valves/brochures/rs160-eh.pdf"
  17. Hydac. 3-Way proportinoal pressure reducing valve, Retrived from "https://www.hydac.com.au/pub/media/productattach/e/n/en5978-2_pdmc05s30a-11_1_.pdf"
  18. Vuojolainen, J., Nevaranta, N., Jastrzebski, R., & Pyrhonen, O. (2017). Comparison of excitation signals in active magnetic bearing system identification. Modeling, Identification and Control, 38(1), 1-11. ISSN 1890-1328.
  19. MathWorks. PID controller design. Retrieved from "https://kr.mathworks.com/help/control/pid-controller-design.html"