• Title/Summary/Keyword: 비례적분미분

Search Result 80, Processing Time 0.034 seconds

An Adaptive Speed Control of a Diesel Engine by means of a Model Matching method and the Nominal Model Tracking Method (모델 매칭법과 규범모델 추종방식에 의한 디젤기관의 적응속도제어)

  • 유희한;소명옥;박재식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.609-616
    • /
    • 2003
  • The purpose of this study is to design the adaptive speed control system of a marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. The authors proposed already a new method to determine efficiently the PID control Parameters by the Model Matching Method. typically taking a marine diesel engine as a non-oscillatory second-order system. But. actually it is very difficult to find out the exact model of a diesel engine. Therefore, when diesel engine model and actual diesel engine are unmatched as an another approach to promote the speed control characteristics of a marine diesel engine, this paper Proposes a Model Reference Adaptive Speed Control system of a diesel engine, in which PID control system for the model of a diesel engine is adopted as the nominal model and Fuzzy controller and derivative operator are adopted as the adaptive controller.

The Design of the Controller for Bio-wrap Winding Machine using Muti-variable Decentralized Control Technique (다중 변수 분산 제어기법을 이용한 생분해성 랩 와인딩 기계의 제어기 설계)

  • Kim H.S.;Park W.C.;Shen Y.D.;Yang S.M.;Kee C.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1450-1454
    • /
    • 2005
  • In this paper, the control strategy of the tension and speed based a prototype bio-wrap winding machine is developed. The decentralized control strategy using PID control algorithm applied for each subsystem is proposed to control the each system's desired outputs, because the tension of each subsystem effects that of next roll system. The computer simulations and the experiment results are presented to show that the proposed control scheme is feasible for a prototype bio-wrap winding machine.

  • PDF

Controller Design for Stable Engine Idle Mode (안정한 엔진 공회전 모드를 위한 제어기 설계)

  • 이영춘;방두열;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • The engine idle speed mode becomes worse as one drives a vehicle for several years. This is due to ageing of engine and power-train parts. In this case, unstable idle conditions such as engine stall and droop are frequently experienced when the engine gets heavy torque loads due to power steering pump and air conditioning compressor. The objective of this paper is to study on the idle speed control using PID controller under load disturbances. The input of the PID controller is an error of rpm. The output of the PID controller is an ISCV duty cycle. The dSPACE Controller Boards are used to interface with engine. The on-vehicle test is realized using by SIMULINK and BLOCKSETS tools. The real time interface control panel supplied by Control Desk S/W is designed to have good results in engine idle speed control.

  • PDF

유전 알고리듬을 이용한 헬리콥터의 퍼지 PID 제어기의 성능 개선

  • 김문환;이호재;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.165-168
    • /
    • 2001
  • 본 논문은 비선형 헬리콥터 시스템의 퍼지 비례-적분-미분 (PID) 제어기의 설계기법을 제안한다. 퍼지 제어기는 풍부한 자유도를 포함하므로 비선형 시스템의 제어에 매우 적합하다. 그러나 이의 설계는 전문가의 지식에 의존하므로 시스템의 정확한 지식의 획득에 어려울 경우 우수한 성능을 보장하는 제어기의 설계가 매우 어렵다. 따라서 본 논문에서는 제안된 퍼지 PID 제어기의 성능 향상 및 최적화를 위하여 전역적 비선형 최적화 기법인 유전 알고리듬 (GA)을 도입한다. 본 논문에서 제안한 퍼지 PID 제어기의 설계기법은 실제 비선형 헬리콥터 실험 장치에 적용하여 그 효용성 및 실제 산업분야에의 응용 가능성을 보인다.

  • PDF

Controller Auto-tuning Scheme for Improving Feedback System Performance in Frequency Domain (주파수역에서의 피드백시스템의 성능향상을 위한 제어기 Atuo-tuning 기법)

  • 정유철;이건복
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.26-30
    • /
    • 2001
  • Controller refinement scheme to improve the performance of a conventional system automatically in frequency domain is proposed. The controller automatic tuning method features using experimental frequency responses of the conventional closed-loop system, the conventional controller, and the improved closed-loop system, instead of poorly modeled plant due to non-linearities and disturbances. The improved closed-loop system characteristics is automatically acquired by the con-ventional closed-loop system characteristics and the proposed performance index in system bandwidth. And the proper controller is realized by least squares approximation in frequency domain. To testify the usefulness of the approach, the path tracking control of robot arm is performed. Experimental results and analytic results are well-matched.

  • PDF

Temperature Control for an Oil Cooler System Using PID Control with Fuzzy Logic (퍼지 적용 PID제어를 이용한 오일쿨러 시스템의 온도제어)

  • 김순철;홍대선;정원지
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • Recently, technical trend in machine tools is focused on enhancing of speed, accuracy and reliability. The high speed usually results in thermal displacement and structural deformation. To minimize the thermal effect, precision machine tools adopt a high precision cooling system. This study proposes a temperature control for an oil cooler system using Pill control with fuzzy logic. In the cooler system, refrigerant flow rate is controlled by rotational speed of a compressor, and outlet oil temperature is selected as the control variable. The fuzzy control rules iteratively correct PID parameters to minimize the error and difference between the outlet temperature and the reference temperature. Here, ambient temperature is used as the reference one. To show the effectiveness of the proposed method, a series of experiments are conducted for an oil cooler system of machine tools, and the results are compared with the ones of a conventional Pill control. The experimental results show that the proposed method has advantages of faster response and smaller overshoot.

Speed Control of a Diesel Engine Generator by a Electric Governor (전기식 조속기를 이용한 디젤 엔진 발전기의 속도 제어)

  • Lee, Seung-Hwan;Lee, Joon-Hwan;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.452-454
    • /
    • 2008
  • 본 논문에서는 실험적으로 구한 엔진 토크 참조 표를 이용하여 엔진의 비선형 모델을 구하고 이를 각각의 운전 점에 대해 선형화한 엔진 모델을 제시하였다. 이러한 선형화된 엔진 모델을 이용하여, 전기식 조속기를 사용한 디젤 엔진의 속도 제어에 있어 발생하는 안정성 문제를 해석하였다. 제시한 디젤 엔진 모델을 이용하여 속도제어기의 비례, 적분 미분 이득을 설정하고 이 값을 바탕으로 모의실험 및 실험을 통하여 제시한 모델의 타당성을 검증 하였다.

  • PDF

Design of a Drilling Torque Controller in a Machining Center (머시닝센터에서 드릴링 토크 제어기의 설계)

  • 오영탁;권원태;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.513-518
    • /
    • 2001
  • As the machining depth increases, the drilling torque increases and fluctuates and the risk of drill failure also increases. Hence, drilling torque control is very important to prevent the drill from failure. In this study, a PID controller was designed to control the drilling torque in a machining center. The plant including the feed drive system, cutting process, and spindle system was modeled for controller design. The Ziegler-Nichols rule was used to determine the controller gain and control action times. The root locus plot was used to tune the controller gain for a certain cutting condition. Also, suggested was a simple method to obtain the tuned controller gain for an arbitrary cutting condition not using the Ziegler-Nichols rule and root locus plot. The cutting torque control, performance of the designed controller and the effect of gain tuning on the control performance were examined.

  • PDF

Controller Auto-tuning Scheme using System Monitoring inFrequency Domain (주파수역에서 시스템 감시를 이용한 제어기 Auto-tuning기법)

  • 정유철;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.136-139
    • /
    • 2000
  • Controller refinement scheme to improve the performance of a conventional system automatically in frequency domain is proposed. The controller automatic tuning method features using experimental frequency responses of the conventional closed-loop system, the conventional controller, and the improved closed-Imp system; instead of poorly modeled plant due to non-linearities and disturbances. The improved closed-loop system characteristics is automatically acquired by the conventional closed-loop system characteristics and the proposed performance index in system bandwidth. And the proper controller is realized by least squares approximation in frequency domain. To testify the usefulness of the approach, experimental results of robot path-tracking control applied with various controllers is used, and then is analyzed with respect to a equivalent proportional controller. Experimental results and analytic results are well-matched.

  • PDF

퍼지 간접추론법에 의한 비례-적분-미분 제어기의 점진적 자기동조

  • 김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.182-186
    • /
    • 1992
  • A self tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The fuzzy technique is considered to obtain ease and simplicity of tuning process. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the followed tuning process can be made effectively. The design parameters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proped tuning method can produce an effective tuning for arbitaray design performances.