Conventional research on image restoration has focused on restoring degraded images resulting from image formation, storage and communication, mainly in the signal processing field. Related research on recovering original image information of caption regions includes a method using BMA(block matching algorithm). The method has problem with frequent incorrect matching and propagating the errors by incorrect matching. Moreover, it is impossible to recover the frames between two scene changes when scene changes occur more than twice. In this paper, we propose a method for recovering original images using EBMA(Extended Block Matching Algorithm) and a region compensation method. To use it in original image recovery, the method extracts a priori knowledge such as information about scene changes, camera motion and caption regions. The method decides the direction of recovery using the extracted caption information(the start and end frames of a caption) and scene change information. According to the direction of recovery, the recovery is performed in units of character components using EBMA and the region compensation method. Experimental results show that EBMA results in good recovery regardless of the speed of moving object and complexity of background in video. The region compensation method recovered original images successfully, when there is no information about the original image to refer to.
This paper proposes a method to insert virtual objects into a real video stream based on feature tracking and camera pose estimation from a set of single-camera video frames. To insert or modify 3D shapes to target video frames, the transformation from the 3D objects to the projection of the objects onto the video frames should be revealed. It is shown that, without a camera calibration process, the 3D reconstruction is possible using multiple images from a single camera under the fixed internal camera parameters. The proposed approach is based on the simplification of the camera matrix of intrinsic parameters and the use of projective geometry. The method is particularly useful for augmented reality applications to insert or modify models to a real video stream. The proposed method is based on a linear parameter estimation approach for the auto-calibration step and it enhances the stability and reduces the execution time. Several experimental results are presented on real-world video streams, demonstrating the usefulness of our method for the augmented reality applications.
The infectious information hiding system(IIHS) is proposed for secure distribution of high quality video contents by applying optimized watermark embedding and detection algorithms to video codecs. And the watermark as infectious information is transmitted while target video is displayed or edited by codecs. This paper proposes a fast and effective reversible watermarking and infectious information generation for IIHS. Our reversible watermarking scheme enables video decoder to control video quality and watermark strength actively for by adding control code and expiration date with the watermark. Also, we designed our scheme with low computational complexity to satisfy it's real-time processing in a video codec, and to prevent time or frame delay during watermark detection and video restoration, we embedded one watermark and one side information within a macro-block. Experimental results verify that our scheme satisfy real-time watermark embedding and detection and watermark error is 0% after reversible watermark detection. Finally, we conform that the quality of restored video contens is almost same with compressed video without watermarking algorithm.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.4
/
pp.891-898
/
2014
The DVC (Distributed Video Coding) provides a theoretical basis for the implementation of light video encoder. Conventionally, lots of studies have been focused on the codec scheme of Stanford University that has a feedback channel to control the bit rate finely. However, the codec scheme can not evaluate the qualities of the frames reconstructed by the received parity bits at the decoder side. This paper presents an efficient method of estimating distortion by correcting the virtual channel noises in side information and then facilitating the measurements of the visual qualities. Through several simulations, it is shown that the proposed method is very efficient in estimating the visual qualities of the reconstructed WZ frames.
Kim, Woosuk;Kang, Ji-Won;Oh, Kwan-Jung;Kim, Jin-Woong;Kim, Dong-Wook;Seo, Young-Ho
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.93-94
/
2021
본 연구는 딥러닝 기반의 복원 모델을 사용하여, 비디오 압축을 통해 변질된 위상 홀로그램의 화질을 복원하는 방법을 제안한다. 압축 효율을 위해 위상 홀로그램의 해상도를 감소시킨 후 압축한다. 원래의 해상도로 되돌린 홀로그램을 딥러닝 모델을 사용하여 복원한다. 복원된 위상 홀로그램은 원본 홀로그램을 압축한 것보다 동일한 BPP에서 더 높은 PSNR을 보인다.
In this paper, we propose a 3D human body reconstruction and refinement method from the frames extracted from a video to obtain natural and smooth motion in temporal domain. Individual frames extracted from the video are fed into convolutional neural network to estimate the location of the joint and the silhouette of the human body. This is done by projecting the parameter-based 3D deformable model to 2D image and by estimating the value of the optimal parameters. If the reconstruction process for each frame is performed independently, temporal consistency of human pose and shape cannot be guaranteed, yielding an inaccurate result. To alleviate this problem, the proposed method analyzes and interpolates the principal component parameters of the 3D morphable model reconstructed from each individual frame. Experimental result shows that the erroneous frames are corrected and refined by utilizing the relation between the previous and the next frames to obtain the improved 3D human reconstruction result.
본 논문은 MPEG 비디오에서 나타나는 여러 예측 형태의 움직임 벡터를 프레임 타입에 관계없이 단일 예측방향만을 갖도록 새롭게 추정하여 비디오 영상물의 분석에 직접적으로 활용하는 방안에 대해 제시하고 있다. 또한 재 추정된 각 프레임에서의 움직임 벡터를 이용한 비디오 시퀀스 내에서의 객체 추출 및 추적 기법 등에 대해서도 함께 제안하였다. 제안된 알고리즘은 영상에 대한 복원과정을 거치지 않고, 압축 비디오 영역으로부터 쉽게 추출될 수 있는 매크로 블록 영역 상에서 수행되었으며, 실험 결과는 제안된 방법의 높은 성능을 잘 나타내어 주고 있다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.2
/
pp.281-288
/
2016
The natural moving objects are the most non-rigid shapes with randomly time-varying deformation, and its types also very diverse. Methods of non-rigid shape reconstruction have widely applied in field of movie or game industry in recent years. However, a realistic approach requires moving object to stick many beacon sets. To resolve this drawback, non-rigid shape reconstruction researches from input video without beacon sets are investigated in multimedia application fields. In this regard, our paper propose novel CPSRF(Chained Partial Stereo Rigid Factorization) algorithm that can reconstruct a non-rigid 3D shape. Our method is focused on the real-time reconstruction of non-rigid 3D shape and motion from stereo 2D video sequences per frame. And we do not constrain that the deformation of the time-varying non-rigid shape is limited by a Gaussian distribution. The experimental results show that the 3D reconstruction performance of the proposed CPSRF method is superior to that of the previous method which does not consider the random deformation of shape.
In this paper, we propose a video enhancement method using generative adversarial networks to remove raindrops and restore the background information on the removed region in the coastal wave video imagery distorted by raindrops during rainfall. Two experimental models are implemented: Pix2Pix network widely used for image-to-image translation and Attentive GAN, which is currently performing well for raindrop removal on a single images. The models are trained with a public dataset of paired natural images with and without raindrops and the trained models are evaluated their performance of raindrop removal and background information recovery of rainwater distortion of coastal wave video imagery. In order to improve the performance, we have acquired paired video dataset with and without raindrops at the real coast and conducted transfer learning to the pre-trained models with those new dataset. The performance of fine-tuned models is improved by comparing the results from pre-trained models. The performance is evaluated using the peak signal-to-noise ratio and structural similarity index and the fine-tuned Pix2Pix network by transfer learning shows the best performance to reconstruct distorted coastal wave video imagery by raindrops.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.41
no.2
/
pp.113-130
/
2004
Most multimedia data contain text to emphasize the meaning of the data, to present additional explanations about the situation, or to translate different languages. But, the left makes it difficult to reuse the images, and distorts not only the original images but also their meanings. Accordingly, this paper proposes a support vector machines (SVMs) and spatiotemporal restoration-based approach for automatic text detection and removal in video sequences. Given two consecutive frames, first, text regions in the current frame are detected by an SVM-based texture classifier Second, two stages are performed for the restoration of the regions occluded by the detected text regions: temporal restoration in consecutive frames and spatial restoration in the current frame. Utilizing text motion and background difference, an input video sequence is classified and a different temporal restoration scheme is applied to the sequence. Such a combination of temporal restoration and spatial restoration shows great potential for automatic detection and removal of objects of interest in various kinds of video sequences, and is applicable to many applications such as translation of captions and replacement of indirect advertisements in videos.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.