• Title/Summary/Keyword: 비결정성 수지

Search Result 17, Processing Time 0.024 seconds

A Study on the Warpage in Injection Molded Part for Various Part Designs and Non Reinforced Resins (비 보강 수지의 종류와 사출성형품의 설계에 따른 휨의 연구)

  • Lee, M.;Kim, J.H.;Park, S.R.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.373-377
    • /
    • 2009
  • Most of the plastics products are being manufactured by injection molding. Warpage in injection molded affects the product dimension and it causes assembling problem. In this study, warpages in the injection molded part been studied. Specimens are rectangular flat shapes with and without ribs. Amorphous polymers (PC and ABS) and crystalline polymers (PP and PA66) were used for material. Flat shape with ribs showed higher warpage than flat shape without ribs by 6 to 9%. The specimens with ribs that are located parallel to the flow direction has higher warpage than specimens with ribs that are located perpendicular to the flow direction by 25 to 39%. Crystalline polymers have higher warpage than amorphous polymers by 23 to 67%. Warpage decreases as packing time increases and it increases as injection temperature increases.

Shrinkage in Injection Molded Part for Operational Conditions and Resins (성형조건과 수지의 종류에 따른 사출 성형품의 성형 수축)

  • Mo, Jung-Hyuk;Chung, Wan-Jin;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.295-302
    • /
    • 2003
  • The amount of shrinkage of injection molded parts is different from operational conditions of injection molding such as injection temperature, injection pressure and mold temperature, and mold design such as gate size. It also varies depending on the presence of crystalline structure in resins. In this study, part shrinkage was investigated for various operational conditions and resins. Poly(butylene terephthalate) (PBT) for crystalline polymer, and polycarbonate (PC) and poly(methyl methacrylate) (PMMA) for amorphous polymers were used. Crystall me polymer showed higher part shrinkage by about three times than that of amorphous polymers. Part shrinkage increased as melt and molt temperatures increased, and injection pressure decreased. Part shrinkage decreased as gate size increased since the pressure delivery is mush easier for larger gate sizes. Part shrinkage at the position close to the gate was larger than that or the position far from gate. This phenomenon might be occur by difference of residual stress.

A Study on the Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 2. Crystalline Plastics (유리섬유로 보강된 수지에서 제품설계 및 성형조건에 따른 휨의 연구: Part 2. 결정성 수지)

  • Lee, Min;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • Injection molding process is a popular polymer processing involving plasticizing and enforcing the material flow into the mold. A polymer material shrinks according to temperature variations during the shaping process, and subsequently molding shrinkage developed. Developed deflections or warpages after molding process in part are caused by residual stress relaxation contained in the part. Adding inorganic materials or fibers such as glass and carbon to control shrinkage and enhance warpage resistance are common. In this study, warpages according to part design have been investigated through experiment. Warpages for molding conditions and mold designs such as gate locations were measured. Warpages along flow direction and perpendicular to the flow direction were also measured. Warpages near gate and far from gate were compared. Glass fiber reinforced crystalline polymers, PP and PA66 have been used in this experiment. Glass fiber reinforced crystalline polymers showed large warpage compared with glass reinforced amorphous polymers. Warpages in crystalline polymers were less influenced by molding conditions compared with amorphous polymers, however warpages of crystalline polymers significantly depend on part design.

Effect of Phenolic Antioxidants System on Yellowing of Amorphous Poly-α-olefin (페놀계 산화방지제에 의한 비결정성 올레핀 수지의 황변 거동)

  • Kim, Si-Yong;Kim, Ho-Gyum;Park, Sang-Cheol;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.156-161
    • /
    • 2013
  • Phenolic antioxidants are effective stabilizers that provide excellent long-term heat stability by preventing thermo-oxidative degradation during processing and service life. However, under a selected set of circumstances, certain types of phenolics have been susceptible to discoloration due to prolonged storage in an environment containing oxides of nitrogen. It is investigated that the effect of addition of secondary antioxidant and chemical structure of primary antioxidant on discoloration of amorphous poly-${\alpha}$-olefin (APAO), which is especially prone to be decomposed in high processing temperature. From the result, it is concluded that a higher level of steric hindrance of phenolic antioxidant provided by long alkyl chain allows a more enhanced synergic effect with secondary antioxidant.

Study on the Thermal Properties and Adhesion Strength of Amorphous Polyalphaolefins/Petroleum Resin Blonds as a Hot Melt Adhesive (핫 멜트 접착제로 사용되는 비 결정성 올레핀 수지/석유수지 블렌드의 열적 성질 및 접착성에 관한 연구)

  • 홍인오;김환기;강호종
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.513-519
    • /
    • 2000
  • The effect of petroleum resin as a tackifier for polyalphaolefin (APAO) hot melt adhesive on thermal properties, crystallinity and adhesion strength was investigated. The presence of petroleum resin resulted in the melting temperature decrease in APAO/petroleum blend, especially, in APAO with low ethylene content/C$_{5}$ petroleum blend. It was also found that petroleum resin caused the decrease of crystallinity regardless of ethylene content in APAO. The maximum adhesion strength was found to be at 50/50 (APAO/petroleum) composition. $C_{5}$ resin was more effective to increase adhesion strength than $C_{9}$ for APAO with high ethylene content. In addition, it was found that the adhesion strength was improved with the decrease of crystallinity in APAO/petroleum resin hot melts.

  • PDF

A Study on the Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 1. Amorphous Plastics (유리섬유로 보강된 수지에서 제품설계 및 성형조건에 따른 휨의 연구: Part 1. 비결정성 수지)

  • Lee, Min;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.555-563
    • /
    • 2012
  • Warpage of injection molded product is caused by non-uniform shrinkage during shaping operation and relaxation of residual stress. Robust part design and glass fiber reinforced reins have been adopted to prevent warpage of part. Warpages for part designs have been investigated in this study according to the injection molding conditions. Part design contains flat specimen and two different rib designs in the flat part. Resins used in this study were glass fiber reinforced amorphous plastics, PC and ABS. Different rib designs showed significant differences of warpages in the parts. Various warpages have been observed in the three regions of the part, near gate region, opposite region to the gate, and flow direction region. Results of computer simulation revealed that the warpages were strongly related to glass fiber orientation. Flat specimen showed the smallest warpage and the specimen with ribs to the flow direction showed a high resistance to warpage. Warpage highly depended upon part design rather than molding condition. It was concluded that the rib design and selection of gate location in injection molding would be the most important factors for the control of warpage since those are directly related to the fiber orientation during molding.

A Study on the Filling Imbalances between Multi-Cavity in Hot-Runner Mold (핫러너 금형에서 다수 캐비티 사이에 발생하는 충전불균형에 관한 연구)

  • Han Seong Ryeol;Kang Chul Min;Han Kyu Taek;Jeong Yeong Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.173-178
    • /
    • 2005
  • Recently plastic parts are molded for the purpose of mass production in multi-cavity system. Therefore, designer is usually designing mold that has geometrically balanced runner lay-out for filling balance at each cavity. Although, mold is manufactured with geometrically balanced runner lay-out, there are actually filling imbalances in the cavities. These filling imbalances phenomenon are caused by complicated interaction between melt and mold. In this study, based on previous studies for filling imbalances in cold-runner mold, filling imbalances in hot-runner mold were investigated by CAE and injection molding experiments. ABS and PMMA as amorphous polymer, PA as crystalline polymer were used to compare the filling imbalances. There were different results of CAE and experiment. The filling imbalances decreased as injection rate increased without regard to kind of resins and were lower than the one of cold-runner.

A Study on the Filling Imbalances between Multi-Cavity in Hot-Runner Mold (핫러너 금형에서 캐비티사이의 충전불균형 현상에 관한 연구)

  • Han S.R.;Jeong Y.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.598-601
    • /
    • 2005
  • Plastic parts are molded for the purpose of mass production in multi-cavity system. Therefore, designer is usually designing molds that has geometrically balanced runner lay-out for filling balance at each cavities. Although, mold is manufactured with geometrically balanced runner lay-out, there are actually filling imbalances in cavities. These filling imbalances phenomenon are caused by complicated interaction between melt and mold. In this study, based on previous studies for filling imbalances in cold-runner mold, filling imbalances in hot-runner mold were investigated by CAE and injection molding experiments. ABS, PMMA as amorphous polymer and PA, PP as crystalline polymer were used to compare the filling imbalances. The filling imbalances decreased as injection rate increased without regard to kind of resins and were lower than the one of cold-runner.

  • PDF

A Study on the Injection Molding Process of Inline Skate Frame Using Moldflow (Moldflow를 이용한 인라인스케이트 프레임의 사출성형공정에 관한 연구)

  • Lee, Hyoung-Woo;Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.289-295
    • /
    • 2010
  • Injection molding process is one of the most important methods to produce plastic parts with high efficiency and low cost. Today, injection molded parts have been increased dramatically the demand for high strength and quality applications. In this study, In-line skates are made of Al alloy and plastic materials to replace the frame for the optimization process is all about. I interpreted through mold design, Injection molding process that minimizes the runner and the gate dimension will determine the size and shape. Runner and gate dimensions of change based on availability of the product, I'll discuss the injection molding. This report investigates that the optimum injection molding condition for minimum of shrinkage. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.