본 논문에서는 공간 영역에서의 블록 분류 (block classification)와 순방향 신경망 필터(feedforward neural network filter)를 이용한 블록 기반 부호화에서의 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록 경계를 인접 블록간의 통계적 특성을 이용하여 평탄 영역과 에지 영역으로 분류한 후, 각 영역에 대하여 블록화 현상이 발생하였다고 분류된 클래스에 대하여 적응적인 블록간 필터링을 수행한다. 즉, 평탄 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 오류 역전파 학습 알고리듬 (error backpropagation learning algorithm)에 의하여 학습된 2계층 (2-layer) 신경망 필터를 이용하여 블록화 현상을 제거하고, 복잡한 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 에지 성분을 보존하기 위하여 선형 내삽을 이용하여 블록간 인접 화소의 밝기 값만을 조정함으로써 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.
본 논문에서는 블록 분류와 적응적 필터링을 이용하여 블록 기반 부호화에서의 양자화 잡음을 제거하는 후처리 방법을 제안하였다. 제안한 방법에서는 블록 분류, 적응적인 블록 간 필터링, 및 블록 내 필터링의 단계로 이루어진다. 먼저, 각 블록을 8x8 DCT 계수 분포에 따라 7개의 클래스로 분류하고, 인접한 두 클래스 정보에 따라 적응적인 블록 간 필터링을 수행한다. 그리고 에지 블록으로 분류된 블록에 대하여 에지맵을 이용한 블록 내 필터링을 수행한다. 실험결과로부터 제안한 방법이 기존의 방법에 비하여 객관적 화질 측면에서는 유사하지만, 주관적 화질 측면에서 보다 우수함을 확인하였다.
이 논문에서는 영상시퀀스의 프레임간 차영상 블록을 영상활동도의 크기 및 분포에 따라 적응적으로 분류함으로써 영상시퀀스를 압축하는 기법을 제안한다. 활동도의 크기에 의한 분류에서는 차영상 블록에 포함되어 있는 물체의 에지부분에 해당하는 활동블록과 비활동 블록으로 분류하고, 활동도의 분포에 의한 분류에서도 활동블록들을 이산 코사인변환계수의 분포정도를 특징으로 하여 수직, 수평, 저활동 블록으로 분류한다. 대표적인 분류결과를 이용하여 RBFN 신경망을 학습시켜 프레임간 차영상 블록들의 비선형적인 분류 특성을 얻었다. 시뮬레이션 결과 RBFN을 이용한 차영상 블록의 분류가 영상활동도의 정렬방법이나 다층퍼셉트론 신경망(MLP)에 비해 영상시퀀스의 압축성능이 향상되었다.
본 논문에서는 블록 분류와 적응적 필터링을 이용하여 블록 기반 부호화에서의 블록화 현상을 제거하는 후처리 방법을 제안하였다. 제안한 방법에서는 블록 분류, 적응적인 블록 간 필터링, 및 블록 내 필터링의 단계로 이루어진다. 먼저, 각 블록을 8$\times$8 DCT 계수 분포에 따라 7개의 클래스로 분류하고, 인접한 두 블록의 클래스 걸보에 따라 적응적인 블록 간 필터링을 수행한다. 그리고 복잡한 클래스로 분류된 블록에 대하여 에지맵을 이용한 블록 내 필터링을 수행한다. 실험결과로부터 제안한 방법이 기존의 방법에 비하여 객관적 화질 및 주관적 화질 측면에서 보다 우수함을 확인하였다.
본 논문에서는 공간 명암도 의존 행렬을 이용하여 문서영상의 다양한 블록들을 상세하게 분류해 낼 수 있는 방법을 제안하였다. 제안한 블록분류 방법에서는 먼저 명암도 문서영상을 이진화하여 평활화 기법을 적용함으로써 명암도 영상의 질감특징을 이용하여 분할하는 것보다 신속하게 블록을 분할하고 동시에 그 위치정보도 구할 수 있도록 하였다. 분할된 각 블록들의 공간 명암도 의존 행렬로부터 문서블록들의 7가지 질감특징을 구하고, 이를 정규화한 다음 역전파 신경회로망를 이용하여 문서블록들을 분류하였다. 문서블록들을 큰 문자, 중간 문자, 작은 문자, 표, 그래픽 및 사진 등 여섯 가지 유형으로 상세 분류하였다. 또한 명암도 문서영상의 2차 통계 질감특징을 얻기 위해 공간 명암도 의존 행렬을 구할 때, 기존의 사진과 같은 일반 영상분할에서와는 달리, 문서블록 고유의 특징이 잘 반영되도록 하였다. 즉, 분할된 각 블록을 하나의 마스크로 정하여 수평 한 방향의 공간 명암도 의존 행렬을 구함으로써 고속의 질감특징추출과 상세 블록분류가 가능하도록 하였다.
본 논문에서는 블록 기반 변환 부호화 영상에서 나타나는 블록화 현상을 분석하고 그 특성에 따라 각 블록 경계를 4개의 영역으로 분류하는 방법을 제안하였다. 그리고 제안한 블록 경계 영역 분류 방법을 이용하여 성능이 우수한 몇 가지 블록화 현상 제거 기법들의 성능을 비교하였다. 제안된 블록 경계 영역 분류 방법에서는 각 수평, 수직 블록 경계를 EQ 영역, BA 영역, 그리고 AE 영역의 4개의 영역으로 분류한다. 블록화 현상 제거기법으로는 LOT, Kim의 웨이브렛 영역에서의 필터링 방법, Yang의 POCS 방법, Paek의 POCS 방법, Jang의 CM 방법을 선택하였다. 실험결과, 제안한 블록 경계 영역 분류 방법으로 블록 경계의 영역들이 블록화 현상에 의한 불연속의 특성을 잘 나타내는 것을 알 수 있었다. 그리고 웨이블렛 변환을 이용하는 블록화 현상 제거 기법들이 대체적으로 우수한 성능을 나타냄을 알 수 있었다.
본 논문에서는 지문영상으로부터 제안한 알고리즘을 이용하여 특이점(Core, Delta)을 추출한 후 특이점의 개수와 종류에 따라서 5가지 부류(arch, tented arch, left loop, right loop, whorl)로 지문영상을 분류하였다. 지문영상을 8*8블록과 16*16블록으로 분할한 후 3*3 Sobel 마스크를 씌워서 대표 방향을 구하였다. 또한 블록으로 분할한 영상으로부터 분산을 구하여 전경과 배경을 분리(segmentation)시켜 수행속도를 향상시켰다. 전처리 과정으로는 일정한 블록마다 임계값을 다르게 적용시키는 블록 이진화 기법을 사용하였으며 특이점을 추출하기 위해서 서로 크기가 다른 2개의 블록으로 영상을 분할하였다. 우선 8*8블록으로 영역을 분할한 후 방향 성분을 구하고 특이점들을 추출하였다. 이 경우 잡영 때문에 특이점이 너무 많이 추출되는 문제점이 있으므로 이러한 해결책으로 16*16블록으로 영역을 분할하여 방향 성분을 구하고 특이점을 추출하였다. 이렇게 다른 두 영역에서 동시에 나타나는 특이점을 후보 특이점으로 잡아서 그 후보 특이점 주변으로 Poincare 지수를 적용하여 확실한 특이점을 선택한 후 5가지의 지문 형태로 분류하였다. 실험결과 대부분의 지문영상에 대하여 강건한 분류 특성을 보이고 있음을 확인하였다.
본 논문에서는 새로운 블록기반 신경망을 제안하고 블록기반 신경망의 패턴류 성능을 확인하였다. 블록기반 신경망은 4개의 가변 입출력을 가지는 블록을 기본 구성요소로하고 있으며 블록들의 2차원배열 형태로 이루어진다. 블록기반 신경망은 재구성가능 하드웨어에 의하여 구현이 용이하고 구조 및 가중치의 최적화에 진화 알고리즘을 적용시킬수 있는 새로운 신경망 모델이다. 블록 기반 신경망의 구조와 가중치를 재고성 가능 하드웨어(FPGA)의 비트열에 대응시키고 유전자 알고리즘에 의하여 전역최적화를 하여 구조와 가중치를 최적화한다. 유전 알고리즘에 의하여 설계된 블록기반 신경망을 비선형 결정평면을 가지는 여러 학습패턴에 적용하여 패턴분류 성능을 확인하였다.
본 논문에서는 영상의 블록 분류 특성에 적응적인 대표 컬러 히스토그램 (representative color histogram)과 방향성 패턴 히스토그램 (directional pattern histogram)을 이용한 새로운 내용 기반 영상 검색 방법 (content-based image retrieval)을 제안한다. 제안한 방법에서는 영상을 일정한 크기의 블록으로 나누고, 분할된 블록의 분류 특성에 따라 컬러와 패턴 특징 벡터를 추출한다. 먼저 분할된 블록을 채도 (saturation)에 따라 휘도 블록 또는 컬러 블록으로 분류한 후, 휘도 블록에 대해서는 블록 평균휘도 쌍의 히스토그램을 구하고, 컬러 블록에 대해서는 블록 평균 컬러 쌍 히스토그램을 구함으로써 블록 분류 특징에 따라 컬러 특징 벡터를 추출한다. 또한 블록 휘도 변화의 기울기 (gradient)를 계산하여 방향성 분류를 행한 후 히스토그램을 계산함으로써 블록 방향성 패턴 특징을 추출한다. 본 논문에서 제안한 영상 검색 방법의 성능을 평가하기 위해서 컴퓨터 모의실험을 행한 결과 제안한 방법이 기존의 방법들보다 정확도 (precision) 및 특징 벡터 차원 (feature vector dimension) 크기 등의 객관적인 측면에서 우수함을 확인하였다.
이 논문에서는 영상데이터를 여러개의 영상블록들로 나누고 이산 코사인변환 영역에서 물체의 에지에 해당하는 영상블록을 에지방향을 고려하여 적절히 분류함으로써 영상데이터를 효과적을 압축하였다. 벡터양자화에 의한 영상데이터의 압축은 높은 압축률을 실현할 수 있지만 영상내 물체의 에지부근이 손상되어 시각적인 화질이 저하되는 단점이 있다. 높은 압축률을 유지하면서도 시각적인 화질의 열화를 피하기 위하여 영상블록의 이산 코사인변환계수의 에너지 분포에 따라 에지블록을 8개의 부류로 분류하였다. 또한 이 분류과정을 통하여 얻어진 데이터를 가지고 신경회로망을 학습하여 구현한 에지블록의 분류과정과 성능을 비교하였다. 에너지분포에 의한 에지분류방법과 신경망으로 학습한 분류과정은 에지특성벡터에 의한 분류벡터양자화에 비해 더 높은 PSNR과 시각적으로 좋은 화질을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.