• Title/Summary/Keyword: 블랍 분석

Search Result 9, Processing Time 0.028 seconds

Image Analysis for Surveillance Camera Based on 3D Depth Map (3차원 깊이 정보 기반의 감시카메라 영상 분석)

  • Lee, Subin;Seo, Yongduek
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.286-289
    • /
    • 2012
  • 본 논문은 3차원 깊이 정보를 이용하여 감시카메라에서 움직이는 사람을 검출하고 추적하는 방법을 제안한다. 제안하는 방법은 GMM(Gaussian mixture model)을 이용하여 배경과 움직이는 사람을 분리한 후, 분리된 영역을 CCL(connected-component labeling)을 통하여 각각 블랍(blob) 단위로 나누고 그 블랍을 추적한다. 그 중 블랍 단위로 나누는 데 있어 두 블랍이 합쳐진 경우, 3차원 깊이 정보를 이용하여 두 블랍을 분리하는 방법을 제안한다. 실험을 통하여 제안하는 방법의 결과를 보인다.

  • PDF

Analysis of Human Activity Using Silhouette And Feature Parameters (실루엣과 특징 파라미터를 이용한 사람 행동 분석)

  • Kim, Sun-Woo;Choi, Yeon-Sung;Yang, Hae-Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.923-926
    • /
    • 2011
  • 본 연구에서는 움직이는 물체가 있는 비디오에서 검출된 전경 영상(실루엣)을 토대로 사람을 추적하고 추적된 사람의 실루엣 형상을 통하여 활동성을 인식하는 실시간 감시 시스템에 적용 가능한 사람의 행동을 인식하고 분석하고자 한다. 전경에서 블랍(사람)을 검출하는 방법은 기존에 연구했던 차영상을 이용하였고, 검출된 블랍을 대상으로 사람임을 판단하고 사람인 경우 검출된 블랍의 실루엣을 이용한 기존의 자세 추정 기법에 추가적으로 4가지 특징들을 추가하여 사람의 행동을 분석한다. 각 파라미터들은 임계치를 통하여 구분하였다. 본 논문에서는 사람의 행동은 크게 네 가지의 경우로 {Standing, Bending/Crawling, Laying down, Sitting} 분류한다. 제안된 특징 파라미터들을 추가한 방법은 기존의 실루엣 기반의 자세 추정 기법만을 사용하는 것보다 좀더 높은 인식율을 보여주었다.

  • PDF

A TFT-LCD Defect Detection Method based on Defect Possibility using the Size of Blob and Gray Difference (블랍 크기와 휘도 차이에 따른 결함 가능성을 이용한 TFT-LCD 결함 검출)

  • Gu, Eunhye;Park, Kil-Houm
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.43-51
    • /
    • 2014
  • TFT-LCD image includes a defect of various properties. TFT-LCD image have a recognizable defects in the human inspector. On the other hand, it is difficult to detect defects that difference between the background and defect is very low. In this paper, we proposed sequentially detect algorithm from pixels included in the defect region to limited defects. And blob analysis methods using the blob size and gray difference are applied to the defect candidate image. Finally, we detect an accurate defect blob to distinguish the noise. The experimental results show that the proposed method finds the various defects reliably.

Analysis of Human Activity Using Motion Vector and GPU (움직임 벡터와 GPU를 이용한 인간 활동성 분석)

  • Kim, Sun-Woo;Choi, Yeon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1095-1102
    • /
    • 2014
  • In this paper, We proposed the approach of GPU and motion vector to analysis the Human activity in real-time surveillance system. The most important part, that is detect blob(human) in the foreground. We use to detect Adaptive Gaussian Mixture, Weighted subtraction image for salient motion and motion vector. And then, We use motion vector for human activity analysis. In this paper, the activities of human recognize and classified such as meta-classes like this {Active, Inactive}, {Position Moving, Fixed Moving}, {Walking, Running}. We created approximately 300 conditions for the simulation. As a result, We showed a high success rate about 86~98%. The results also showed that the high resolution experiment by the proposed GPU-based method was over 10 times faster than the cpu-based method.

Analysis of Human Activity Using Motion Vector (움직임 벡터를 이용한 사람 활동성 분석)

  • Kim, Sun-Woo;Choi, Yeon-Sung;Yang, Hae-Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.157-160
    • /
    • 2011
  • In this paper, We proposed the method of recognition and analysis of human activites using Motion vector in real-time surveillance system. We employs subtraction image techniques to detect blob(human) in the foreground. When MPEG-4 video recording EPZS(Enhanced Predicted Zonal Search) is detected the values of motion vectors were used. In this paper, the activities of human recognize and classified such as meta-classes like this {Active, Inactive}, {Moving, Non-moving}, {Walking, Running}. Each step was separated using a step-by-step threshold values. We created approximately 150 conditions for the simulation. As a result, We showed a high success rate about 86~98% to distinguish each steps in simulation image.

  • PDF

large-scale interactive display system using gesture recognition module (제스처 인식 모듈을 이용한 대규모 멀티 인터랙티브 디스플레이 시스템)

  • Kang, Maeng-Kwan;Kim, Jung-Hoon;Jo, Sung-Hyun;Joo, Woo-Suck;Yoon, Tae-Soo;Lee, Dong-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.803-806
    • /
    • 2010
  • 본 논문에서는 스크린을 터치를 하지 않고 또한 스크린의 영역의 크기에 상관없이 제스처를 이용하여 인터랙션이 가능한 제스쳐 인식 모듈을 이용한 대규모 멀티 인터랙티브 디스플레이 시스템을 제안한다. IR laser를 이용하여 인터랙션 영역을 생성하고 band pass filter를 장착한 적외선 카메라를 이용하여 인터랙션 영역 안의 영상을 획득한다. 획득되어진 영상은 제안하는 영상처리모듈을 이용하여 이진화->블랍-라벨링 과정을 거쳐 잡음을 제거한 후 인터랙션 영역 안에서 이루어지는 인터랙션 좌표를 획득한 후 Packet으로 저장한다. 저장 된 Packet은 네트워크 통신 시스템을 이용하여 Server로 보내어지고 Server에서는 메타포분석모듈을 이용하여 분석하여 결과를 메타포이벤트로 저장한 후 콘텐츠에 보낸다. 콘텐츠에서는 받은 메타포이벤트에 따라서 콘텐츠 결과를 보여 줌으로써 스크린을 터치 하지 않아도 터치 인터랙션이 가능하며 스크린 영역에 제한 없이 많은 사용자가 동시에 사용이 가능한 시스템 사용이 가능하도록 한다. 본 시스템은 향후 보다 다양한 인터랙션과 시스템 크기의 확장으로 보다 많은 사용자가 동시에 사용가능하며 다양한 인터랙션을 사용할 수 있는 인식 디바이스로써 활용이 가능하다.

A Study on Hand Gesture Recognition with Low-Resolution Hand Images (저해상도 손 제스처 영상 인식에 대한 연구)

  • Ahn, Jung-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Recently, many human-friendly communication methods have been studied for human-machine interface(HMI) without using any physical devices. One of them is the vision-based gesture recognition that this paper deals with. In this paper, we define some gestures for interaction with objects in a predefined virtual world, and propose an efficient method to recognize them. For preprocessing, we detect and track the both hands, and extract their silhouettes from the low-resolution hand images captured by a webcam. We modeled skin color by two Gaussian distributions in RGB color space and use blob-matching method to detect and track the hands. Applying the foodfill algorithm we extracted hand silhouettes and recognize the hand shapes of Thumb-Up, Palm and Cross by detecting and analyzing their modes. Then, with analyzing the context of hand movement, we recognized five predefined one-hand or both-hand gestures. Assuming that one main user shows up for accurate hand detection, the proposed gesture recognition method has been proved its efficiency and accuracy in many real-time demos.

Natural Hand Detection and Tracking (자연스러운 손 추출 및 추적)

  • Kim, Hye-Jin;Kwak, Keun-Chang;Kim, Do-Hyung;Bae, Kyung-Sook;Yoon, Ho-Sub;Chi, Su-Young
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.148-153
    • /
    • 2006
  • 인간-컴퓨터 상호작용(HCI) 기술은 과거 컴퓨터란 어렵고 소수의 숙련자만이 다루는 것이라는 인식을 바꾸어 놓았다. HCI 는 컴퓨터 사용자인 인간에게 거부감 없이 수용되기 위해 인간과 컴퓨터가 조화를 이루는데 많은 성과를 거두어왔다. 컴퓨터 비전에 기반을 두고 인간과 컴퓨터의 상호작용을 위하여 사용자 의도 및 행위 인식 연구들이 많이 행해져 왔다. 특히 손을 이용한 제스처는 인간과 인간, 인간과 컴퓨터 그리고 최근에 각광받고 있는 인간과 로봇의 상호작용에 중요한 역할을 해오고 있다. 본 논문에서 제안하는 손 추출 및 추적 알고리즘은 비전에 기반한 호출자 인식과 손 추적 알고리즘을 병행한 자연스러운 손 추출 및 추적 알고리즘이다. 인간과 인간 사이의 상호간의 주의집중 방식인 호출 제스처를 인식하여 기반하여 사용자가 인간과 의사소통 하는 것과 마찬가지로 컴퓨터/로봇의 주의집중을 끌도록 하였다. 또한 호출 제스처에 의해서 추출된 손동작을 추적하는 알고리즘을 개발하였다. 호출 제스처는 카메라 앞에 존재할 때 컴퓨터/로봇의 사용자가 자신에게 주의를 끌 수 있는 자연스러운 행동이다. 호출 제스처 인식을 통해 복수의 사람이 존재하는 상황 하에서 또한 원거리에서도 사용자는 자신의 의사를 전달하고자 함을 컴퓨터/로봇에게 알릴 수 있다. 호출 제스처를 이용한 손 추출 방식은 자연스러운 손 추출을 할 수 있도록 한다. 현재까지 알려진 손 추출 방식은 피부색을 이용하고 일정 범위 안에 손이 존재한다는 가정하에 이루어져왔다. 이는 사용자가 제스처를 하기 위해서는 특정 자세로 고정되어 있어야 함을 의미한다. 그러나 호출 제스처를 통해 손을 추출하게 될 경우 서거나 앉거나 심지어 누워있는 상태 등 자연스러운 자세에서 손을 추출할 수 있게 되어 사용자의 불편함을 해소 할 수 있다. 손 추적 알고리즘은 자연스러운 상황에서 획득된 손의 위치 정보를 추적하도록 고안되었다. 제안한 알고리즘은 색깔정보와 모션 정보를 융합하여 손의 위치를 검출한다. 손의 피부색 정보는 신경망으로 다양한 피부색 그룹과 피부색이 아닌 그룹을 학습시켜 얻었다. 손의 모션 정보는 연속 영상에서 프레임간에 일정 수준 이상의 차이를 보이는 영역을 추출하였다. 피부색정보와 모션정보로 융합된 영상에서 블랍 분석을 하고 이를 민쉬프트로 추적하여 손을 추적하였다. 제안된 손 추출 및 추적 방법은 컴퓨터/로봇의 사용자가 인간과 마주하듯 컴퓨터/로봇의 서비스를 받을 수 있도록 하는데 주목적을 두고 있다.

  • PDF

IR Image Segmentation using GrabCut (GrabCut을 이용한 IR 영상 분할)

  • Lee, Hee-Yul;Lee, Eun-Young;Gu, Eun-Hye;Choi, Il;Choi, Byung-Jae;Ryu, Gang-Soo;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.260-267
    • /
    • 2011
  • This paper proposes a method for segmenting objects from the background in IR(Infrared) images based on GrabCut algorithm. The GrabCut algorithm needs the window encompassing the interesting known object. This procedure is processed by user. However, to apply it for object recognition problems in image sequences. the location of window should be determined automatically. For this, we adopted the Otsu' algorithm for segmenting the interesting but unknown objects in an image coarsely. After applying the Otsu' algorithm, the window is located automatically by blob analysis. The GrabCut algorithm needs the probability distributions of both the candidate object region and the background region surrounding closely the object for estimating the Gaussian mixture models(GMMs) of the object and the background. The probability distribution of the background is computed from the background window, which has the same number of pixels within the candidate object region. Experiments for various IR images show that the proposed method is proper to segment out the interesting object in IR image sequences. To evaluate performance of proposed segmentation method, we compare other segmentation methods.