• Title/Summary/Keyword: 브릿지스톤

Search Result 6, Processing Time 0.019 seconds

해외소식

  • Korea Tire Manufacturers Association
    • The tire
    • /
    • s.177
    • /
    • pp.64-65
    • /
    • 1995
  • PDF

해외정보

  • Korea Tire Manufacturers Association
    • The tire
    • /
    • s.211
    • /
    • pp.61-63
    • /
    • 2002
  • PDF

안전차를 위해서의 사치스러운 타이어

  • Korea Tire Manufacturers Association
    • The tire
    • /
    • s.48
    • /
    • pp.21-21
    • /
    • 1973
  • 안전차의 조기개발은 바야흐로 세계의 자동차기술계의 성급한 사명이다. 연이나 안전차는 자동차만의 연구로 해결되는 것은 아니다. 중요부품의 하나인 타이어도 당연이에 일역을 수행 하지 않으면 안된다. 물론 자동차 메이커어에 병행 타이어메이커어도 일야 그에의 노력을 거듭하고 있다. 그래서 안전차의 타이어개발이 가장 진보되어 있다는 소문이 높은 브릿지스톤 타이어에 그뜻을 타진해 봤던바 다음과 같은 회답이 왔다.

  • PDF

Design and analysis of tactile sensor for tri-axial force measurement using FEM (유한요소해석을 이용한 3축 힘 촉각센서 설계 및 해석)

  • Cho, Woon-Ki;Kim, Jong-Ho;Kang, Dae-Im;Lee, Ouk-Sub
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.865-870
    • /
    • 2001
  • A sensing element for tri-axial force measurement, unit sensor of tactile sensor, was designed and evaluated by using finite element method (ANSYS). The sensor has a maximum force range of ${\pm}10$ N in the x, y, and z direction. Optimal cell structures and piezoresistor positions were determined by the strain distribution obtained from finite element analysis. Finally three Wheatstone birdge circuits were arranged and verified by $F_x$, $F_y$, and $F_z$ loading conditions. In addition, in case of sensing element subjected to thermal loading, the outputs of three bridge circuits were also evaluated.

  • PDF

Design and Fabrication of CMOS Micro Humidity Sensor System (CMOS 마이크로 습도센서 시스템의 설계 및 제작)

  • Lee, Ji-Gong;Lee, Sang-Hoon;Lee, Sung-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.146-153
    • /
    • 2008
  • Integrated humidity sensor system with two stages operational amplifier has been designed and fabricated by $0.8{\mu}m$ analog mixed CMOS technology. The system (28 pin and $2mm{\times}4mm$) consisted of Wheatstone-bridge type humidity sensor, resistive type humidity sensor, temperature sensors and operational amplifier for signal amplification and process in one chip. The poly-nitride etch stop process has been tried to form the sensing area as well as trench in a standard CMOS process. This modified technique did not affect the CMOS devices in their essential characteristics and gave an allowance to fabricate the system on same chip by standard process. The operational amplifier showed the stable operation so that unity gain bandwidth was more than 5.46 MHz and slew rate was more than 10 V/uS, respectively. The drain current of n-channel humidity sensitive field effect transistor (HUSFET) increased from 0.54 mA to 0.68 mA as the relative humidity increased from 10 to 70 %RH.

  • PDF

Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load (스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증)

  • Lee, Dong-Seop;Kim, In-Su;Lee, Se-Han;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.