• Title/Summary/Keyword: 브릴리언트 컷

Search Result 6, Processing Time 0.02 seconds

A Study on the Polishing Machining of Diamond for Jewelry (보석용 다이아몬드의 연마가공)

  • Kim Woo-Soon;Kim Dong-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.127-132
    • /
    • 2006
  • The present study deals with polishing machining of diamond for jewelry using developed automatic polishing machine that can cut diamond to have 58 facets in a brilliant cutting which has been hardly achieved by a conventional manually operating polishing machine. Upon the 3-dimensional Sarin M/C test and analysis on the machined diamond by the developed automatic polishing machine its proportion and finishing turned out to be better than the machined diamond by the conventional manually operating polishing machine.

Performance Evaluation of Automatic Polishing Machine for Diamond (다이아몬드용 자동연마기의 성능평가)

  • Oh Jae-Guk;Kim Woo-Soon;Kim Dong-Hyun
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.313-318
    • /
    • 2005
  • The present study deals design and manufacture of automatic polishing machine that can cut diamond to have 58 facets in a brilliant cutting which has been hardly achieved by a conventional manually operating polishing machine. Upon the 3-dimensional Sarin M/C test and analysis on the diamond processed by the automatic polishing machine developed in this study its proportion and finishing turned out to be better than the diamond processed by the conventional method, by being rated as 'very good'.

  • PDF

Color-change for ligand field of cobalt doped yttria stabilized cubic zirconia (YSZ) single crystal (Cobalt가 첨가된 이트리아 안정화 큐빅지르코니아(YSZ) 단결정의 리간드장에 따른 색상변화)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • Cobalt ($Co^{2+}$) doped yttria stabilized cubic zirconia (YSZ, $Y_2O_3\;:\;25{\sim}50wt%$) single crystals grown by a skull melting method were heat-treated in $N_2\;at\;1000^{\circ}C$ for 5 hrs. The reddish brown single crystals were changed into either violet or blue color, respectively. Before and after heat treatment, the Co-doped YSZ crystals cut for wafers (${\phi}6.5{\times}t\;2mm$) and round brilliant (${\phi}10mm$). The optical and structural properties were examined by UV-VIS spectrophotometer and XRD. These results are analyzed absorption by $Co^{2+}\;(^4A_2(^4F)\to{^4P})\;and\;Co^{3+}$, change of energy gap and lattice parameter.

A study on the brilliance by critical angle of gem and measurement theory of refractive index using refractometer (보석의 임계각에 따른 휘광성 및 굴절계를 이용한 굴절률 측정 이론에 관한 연구)

  • Moon, So-I;Seok, Jeong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.105-109
    • /
    • 2011
  • Critical angle of quartz (R.I. ${\fallingdotseq}$ 1.553) and diamond (R.I. = 2.417) are $40.09^{\circ}$ and $24.26^{\circ}$ that calculated by $sin{\theta}=r_2/r_1$ (r = refractive index, $r_1$ > $r_2$). Brilliance of quartz and diamond are 20.33% and 55.07%. The brilliance data are result of study on the incident light internal round brilliant cut quartz and diamond by the critical angle. Cause of bow-tie phenomenon can be studied by application of critical angle theory and light path inside fancy shape brilliant cut. When refractormetry with typical gem refractometer, critical angle of quartz and corundum are $59.1^{\circ}$ and $77.9^{\circ}$.

The ionization energy and lattice parameters of Co- and Ce-doped cubic zirconia (YSZ) single crystal (Co와 Ce를 첨가한 큐빅지르코니아(YSZ) 단결정의 이온화에너지 및 격자상수)

  • Seok, Jeong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.159-163
    • /
    • 2010
  • Co-(0.5 mol%) and Ce-(0~0.3 mol%) doped cubic zirconia ($ZrO_2:Y_2O_3$=64:36 mol%) single crystals grown by a skull melting method were heat-treated in $N_2$ at $1200^{\circ}C$ for 3 hrs. The brown-colored as-grown single crystals were changed into either green or blue color after the heat treatment. Before and after the heat treatment, the YSZ (yttriastabilized zirconia) single crystals were cut for wafer form (${\phi}7mm{\times}t2mm$) and round brilliant cut ($\phi$ 12 mm). The optical and structural properties were examined by UV-VIS spectrophotometer and X-ray diffraction. Absorption by $Ce^{3+}(^2F_{5/2},\;_{7/2}(4f){\rightarrow}^2T_g(5d^1)),\;Co^{2+}(^4A_2(^4F){\rightarrow}^4T_1(^4F)$ or $^4T_1(^4P))$ and $Co^{3+}$, change of ionization energy and lattice parameter were confirmed.

Characterization of coated colorless synthetic moissanite (코팅된 무색 합성 모이사나이트의 특징)

  • Choi, Hyunmin;Kim, Youngchool;Jang, Hansoo;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 2022
  • Recently, Hanmi Gemological Institute & Laboratory (HGI) had an opportunity to examine 5 transparent synthetic moissanite. The round brilliants ranged from 0.93 to 0.96 ct and had a colorless, pink, yellow, blue, and red color. Advanced testing results, including Fourier-transform infrared (FTIR) and Raman spectroscopy, identified all the specimens as synthetic moissanite. Under the microscope, all samples except the colorless were confirmed to be a synthetic moissanite coated with a colored film. EDXRF chemical analysis detected very weak X-ray fluorescence peak characteristics of Ca, Ti, and Co in the colored samples. These features were not detected in the colorless sample. Raman spectroscopy investigation was unable to detect the 1332 cm-1 (produced by sp3 bonding of carbon atoms) or the ~1550 cm-1 (produced by graphite-related sp2 bonding) peak in the colorless sample. The SEM image of the colorless sample showed no indication of a coating. The TEM image of the colorless sample revealed the presence of a 3~8 nm thick layer on the moissanite. Moreover, from the corresponding STEM Z-contrast image combined with the energy-dispersive X-ray spectroscopy (EDX) line profiles and EDX elemental maps, this layer was estimated to be carbon, silicon and oxygen.