DOI QR코드

DOI QR Code

A study on the brilliance by critical angle of gem and measurement theory of refractive index using refractometer

보석의 임계각에 따른 휘광성 및 굴절계를 이용한 굴절률 측정 이론에 관한 연구

  • Moon, So-I (Department of Gem and Precious Metals, Dongshin University) ;
  • Seok, Jeong-Won (Department of Gem and Precious Metals, Dongshin University)
  • 문소이 (동선대학교 보석귀금속학과) ;
  • 석정원 (동선대학교 보석귀금속학과)
  • Received : 2011.05.12
  • Accepted : 2011.06.03
  • Published : 2011.06.30

Abstract

Critical angle of quartz (R.I. ${\fallingdotseq}$ 1.553) and diamond (R.I. = 2.417) are $40.09^{\circ}$ and $24.26^{\circ}$ that calculated by $sin{\theta}=r_2/r_1$ (r = refractive index, $r_1$ > $r_2$). Brilliance of quartz and diamond are 20.33% and 55.07%. The brilliance data are result of study on the incident light internal round brilliant cut quartz and diamond by the critical angle. Cause of bow-tie phenomenon can be studied by application of critical angle theory and light path inside fancy shape brilliant cut. When refractormetry with typical gem refractometer, critical angle of quartz and corundum are $59.1^{\circ}$ and $77.9^{\circ}$.

수정(quartz)과 다이아몬드(diamond)의 임계각을 $sin{\theta}=r_2/r_1$(r = 굴절률, $r_1$ > $r_2$)의 식에 의해 계산한 결과 수정(R.I. ${\fallingdotseq}$ 1.553)은 $40.09^{\circ}$, 다이아몬드(R.I. = 2.417)는 $24.26^{\circ}$로 계산되었다. 계산된 임계각에 따른 각각의 보석 내부의 빛의 경로를 고찰한 결과 수정과 다이아몬드의 휘광성은 각각 20.33%와 55.07%였다. 임계각과 관련된 이론을 팬시 형 브릴리언트 컷으로 연마된 보석내부에서의 빛의 경로에 적용시킴으로써 보타이(bow-tie) 현상의 원인을 규명하였다. 또한 수정과 커런덤을 굴절계로 굴절률 측정 시 헤미실린더에서의 임계각을 계산한 결과 각각 $59.1^{\circ}$$77.9^{\circ}$로 계산되었다.

Keywords

References

  1. G.W. Jeong, "A Study on the hemicylinder of the gem discrimination refractometer $La_{2}O_{3}$ system high refraction glass" (Dongshin Univ., Naju, 2007) 2.
  2. M.E. Thomas, S.K. Andersson, R.M. Sova and R.I. Joseph, "Frequency and temperature dependence of the refractive index of sapphire", Infrared Physics & Technology 39 (1998) 245.
  3. T.H. Kim and A.Y. Sung, "Study on the ophthalmic lens materials with high refractive index containing vinylanisole", J. Korean Chemical Society 54 (2010) 757.
  4. S.J. Bae and U. Kang, "Fluorescece microscope using total internal reflection for measuring biochip", Trans. KIEE 56 (2007) 1695.
  5. K.W. Lee, I.P. Hong, Y.C. Chung and J.G. Yook, "A study on critical angle of metamaterial with drude model", J. Korean Institute of Electromagnetic Engineering and Science 19 (2008) 1022.
  6. H.H. Lim, M.S. Kwon, H.J. Choi, B.J. Kim and M. Cha, "Measurement of refractive index of solid medium by critical angle method when air gap is present", J. Optical Society and Korea 12 (2008) 210. https://doi.org/10.3807/JOSK.2008.12.3.210
  7. G.M. Hagen, D.A. Roess and B.G. Barisas, "Fluorescence photobleaching recovery using total internal reXection interference fringes", Analytical Biochemistry 356 (2006) 34.
  8. W.S. Kim, Y.M. Yu and H.S. Shin, "Optimum conditions for growing gem-quality colorless cubic zirconia", J. Miner. Soc. Korea 14 (2001) 99.
  9. D.W. Choi and J.K. Choi, "A study on the fabrication methods of rough diamond according to their shapes (sawing)", J. Korea Crystal Growth and Crystal Technology 12 (2002) 317.