• Title/Summary/Keyword: 브레이크 시스템

Search Result 214, Processing Time 0.019 seconds

Analysis and Evaluation of the Brake NVH Characteristics for the Fusion-type Friction Material (퓨전형 마찰재의 브레이크 NVH 특성 해석 및 평가)

  • Kwon, Seong-Jin;Bae, Chul-Yong;Kim, Chan-Jung;Kim, Wan-Soo;Lee, Dong-Won;Lee, Bong-Hyun;Seo, Byoung-Youn;Jung, Kwang-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.606-607
    • /
    • 2008
  • Nowadays, noise and vibration phenomena of a disc brake system have been given various names that provide some definitions of sound and vibration emitted such as grind, grunt, moan, squeak, squeal, judder and wire brush. The most common and annoying noise of a disc brake system is squeal noise. It is defined as noise whose frequency content is 1 kHz and higher with excessively high and irrigating sound pressure levels. In this paper, the noise and vibration characteristics of a disc brake system have been investigated to develop the fusion-type friction material, which overcomes the low steel and non-asbestos organic friction materials. For the purpose, both experimental evaluation and complex eigenvalue analysis have been carried out.

  • PDF

A Study on the Antiabrasion of the Aircraft Carbon Disk Brake (항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구)

  • Lee, Jang-Hyun;Yum, Hyun-Ho;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.

System Mode and Sensitivity Analysis for Brake Judder Reduction (브레이크 저더 개선을 위한 시스템 모드분석 및 민감도해석)

  • Hwang In-Jin;Park Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.142-153
    • /
    • 2005
  • The brake judder is a phenomenon that the steering wheel is abnormally vibrating when the car is braked at a high speed. It is classified by the cold and the hot judder. The former is generated due to the initial uneven disk surface and the latter is resulted from the uneven heat spots on disc surface by repeatedly braking. There are two ways to reduce the judder. One is to control vibration by modification of the disk shapes and pad ingredients. The other is to improve modal characteristics of the suspension system. The latter approach is used in this research. In this paper, the real vehicle test and computer simulation are considered to systematically understand the judder phenomenon of the vehicle. The Macpherson strut suspension is employed. Especially, the judder sensitivity is calculated based on design sensitivity analysis. A bush stiffness was reworked and braking test was done to verify the sensitivity result. The judder reduction by the mode control was verified.

A Study on Squeal Noise Robustness Analysis to Improve Composite Brake Stability of High Performance and Eco-Friendly Vehicles (고성능 및 친환경 차량의 복합재 브레이크 안정감 향상을 위한 스퀼 노이즈 강건성 분석에 관한 연구)

  • Shim, J.H.;Lee, J.H.;Shin, U.H.;Lim, D.W.;Hyun, E.J.;Jeo, T.H.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.32-40
    • /
    • 2021
  • Composite material is very attractive because it has excellent mechanical property and is possible to lightweight due to the low density. However, composite material is less used compared to other systems in the chassis system because it is very hard to solve NVH problem when composite material is applied to vehicle. Especially, reducing squeal noise of composite brake system is essential to apply it to vehicle successfully. In this paper, we present a new solution to reduce squeal noise of composite brake system. To achieve this goal, we analyze main causes of noise using RCA (Root Cause Analysis), CA (Contradiction Analysis) and sequentially get IFR (Ideal Final Result) to solve the problem. Next, we define the function of composite brake system and derive control factors and noise factors. A variety of tests for factors like chamfer, slot, damping shim, underlayer of brake pad are done. In addition, we analyze level of contribution for control factors theoretically. Finally, we get the effective solution for reducing squeal noise.

Color Vision Based Close Leading Vehicle Tracking in Stop-and-Go Traffic Condition (저속주행환경에서 컬러비전 기반의 근거리 전방차량추적)

  • Rho, Kwang-Hyun;Han, Min-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.3037-3047
    • /
    • 2000
  • This paper describes a method of tracking a close leading vehicle by color image processing using the pairs of tail and brake lights. which emit red light and are housed on the rear of the vehicle in stop-and-go traffic condition. In the color image converted as an HSV color model. candidate regions of rear lights are identified using the color features of a pair of lights. Then. the pair of tailor brake lights are detected by means of the geometrical features and location features for the pattern of the tail and brake lights. The location of the leading vehicle can be estimated by the location of the detected lights and the vehicle can be tracked continuously. It is also possible to detect the braking status of the leading vehicle by measuring the change in HSV color components of the pair of lights detected. In the experiment. this method tracked a leading vehicle successfully from urban road images and was more useful at night than in the daylight. The KAV-Ill (Korea Autonomous Vehicle- Ill) equipped with a color vision system implementing this algorithm was able to follow a leading vehicle autonomously at speeds of up to 15km!h on a paved road at night. This method might be useful for developing an LSA (Low Speed Automation) system that can relieve driver's stress in the stop-and-go traffic conditions encountered on urban roads.

  • PDF

A Study on Convergence Contact Behavior of Friction Heat and Pad on Disk Brake (디스크 브레이크에서 마찰열과 패드에 작용하는 융합 접촉거동에 관한 연구)

  • Han, Seung-Chul;Lee, Bong-Gu
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.283-289
    • /
    • 2018
  • In automotive disc brake systems, frictional heat is not uniformly dispersed for reasons such as heat flux and thermal deformation. The thermoelastic deformation due to the frictional heat affects the contact pressure distribution and the contact load may be concentrated on the contact portion on the the disc brake surface, resulting in thermoelastic instability. In this study, thermal analysis and thermal deformation analysis considering the contact between disk and pad occurred during braking through 3D axial symmetry model with reference to the experimental equation and Kao's analysis method of contact pressure of disk and pad. ANSYS is used to analyze the thermal and elastic instability problems occurring at the contact surface between the disk and the pad, considering both the thermal and mechanical loads. A 3D axisymmetric model with direct contact between the disk and the pad was constructed to more accurately observe the thermal behavior of the disk by observing the frictional surface temperature, thermal deformation and contact thermal stress of the disk.

On the Pressurization Characteristics of Small Piezoelectric Hydraulic Pump for Brake System (브레이크용 소형 압전유압펌프 가압 동특성 해석)

  • Jeong, Min-Ji;Hwang, Jai-Hyuk;Bae, Jae-Sung;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.963-970
    • /
    • 2015
  • In this study, the pressurization characteristics of the small piezoelectric hydraulic pump for a brake system has been analyzed through modeling the full hydraulic pump components; the pump chamber, check valve, pump load, pump drive controller etc. To analyze the pressurization characteristics, the process of charging pressure in the chamber with stacked-layer piezoelectric actuator were firstly modeled. Secondly, the flow coefficient of the check valve in terms of valve opening has been calculated after computational fluid dynamics analysis, such as the pressure distribution around check valve and the flow rate, was conducted. Also the pump driving controller, which controls the input voltage to the actuator, was designed to make the load pressure follow the input pressure command. The simulation results find that it takes about 0.03ms to reach the operating load pressure required for the braking system. The simulation result was also verified through comparison to the result of the pump performance test.

Vibration Analysis of the Sensor Control Box Applied to a Commercial Brake Chamber Real-time Monitoring System (브레이크 챔버의 실시간 모니터링 시스템에 적용되는 센서 컨트롤 박스의 진동 해석에 관한 연구)

  • Taekju Hwang;Kyungmin Jum;Soonsik Myung;Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.65-69
    • /
    • 2024
  • This study aimed to analyze the structural integrity of a sensor control box, a critical component for real-time monitoring of brake chamber pressure in large commercial vehicles and trailers. We utilized the computational analysis program ANSYS Workbench R2021 based on our testing conditions and vibration test specification KS R1034. Through modal analysis, we identified resonance frequencies within the frequency range of 5 Hz to 100 Hz and compared results in the frequency range of 33 Hz to 67 Hz using harmonic analysis.

Experimental Investigation of Creep Groan Noise (크립 그론 소음 특성에 대한 실험적 연구)

  • Kang, Kyung Min;Jeon, Hyun Cheol;Kang, Yeon June;Cho, Min Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.673-678
    • /
    • 2013
  • Creep groan noise occurs at low frequencies immediately after releasing brake pressure or when a car stops. This noise can be used to predict problems in not only the brake system but also the vehicle system. Because of its complexity, it is difficult to determine its characteristics. Therefore, most improvements are conducted by changing the brake pad, and it still remains difficult to conduct a test using a vehicle. In this study, the characteristics of creep groan noise and the effects from a vehicle system are investigated by using vehicles and an NVH chassis-dynamometer through various tests. A new evaluation method for creep groan noise by using a vehicle is proposed, and the possibility of reduction schemes from the viewpoint of the vehicle system is confirmed from the results mentioned above.

A Study on Brake Gain Adaptive Wheel Slip Control (브레이크 게인 적응 휠 슬립 제어에 관한 연구)

  • Jo, J.S.;Yoo, S.J.;Lee, K.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2007
  • The brake gain adaptive wheel slip controller for a vehicle is designed in this paper. The brake gain from braking pressure to braking torque defined by friction coefficient, friction area and effective friction radius is estimated by the adaptive law based on the wheel slip dynamics. And the wheel slip controller is designed based on the estimated brake gain. The robustness of the designed controller is analyzed using Lyapunov function and the convergence of brake gain is verified. Proposed wheel slip controller is verified via CarSim simulation with two kinds of desired wheel slip ratio.

  • PDF