• Title/Summary/Keyword: 브라켓 구조

Search Result 62, Processing Time 0.02 seconds

Strength Analysis for Transition Structure Design in way of Trunk Deck and Deckhouse on LNGC (LNG 선박의 트렁크 갑판과 거주구 연결 부위의 설계해석)

  • Kwon Seung-Min;Han Sungkon;Heo Joo-Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.76-83
    • /
    • 2005
  • Membrane type LNG Carriers are characterized by their special structures such as trunk deck above upper deck. It is necessary to introduce an appropriate structure arrangement taking into account transition of the trunk deck to the upper deck or deckhouse in fore and aft parts. The transition area at aft part -from trunk deck to the deckhouse - is to be specially considered because of high longitudinal stresses applied at the area. This study has been carried out to tackle the transitional structure problem in design stage This paper deals with not only mesh size of FE models for scantling evaluation and fatigue assessment but also technical issues regarding fatigue assessment.

  • PDF

Effect of Bracket and H-beam Members on the Sungsoo Grand Bridge (브라켓 및 H-빔 부재가 성수대교 붕괴에 미친 영향)

  • 조효남;임종권;안중산
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.422-430
    • /
    • 1998
  • This paper presents the results of a major parametric study on the collapse cause of the Sungsoo Grand Bridge, a Gerber-type continuous truss bridge, which had collapsed just at the 15th year since opening to traffic. Among the various collapse causes such as poor design, poor welding, poor maintenance, and heavy traffic loads, this study focuses on the collapse cause assessment incorporating the effects of braket and H-beam members right below the expansion joint of the suspended truss. A local FEM analysis using fine shell elements is carrided out for the more precise estimation of stress range of the vertical pin-connected hanger whose fatigue fracture triggered the collapse of the bridge. Both the conventional S-N approach and the Ang-Munse's fatigue reliability method are used for the evaluation of the fatigue life and fatigue failure probability for the assessment based on all the available results of various field and labolatory tests. From these observations, It may be affirmatively stated that the effects of bracket and H-beam members accelerated the fatigue failure, and thus should be regarded as one of major causes that triggered the bridge collapse

  • PDF

Shape Design based on Topology Optimization for Manufacturing of Lightweight Valve Disc by 3-D Printing (3차원 프린팅에 의한 경량 밸브 디스크 제조를 위한 위상최적화 기반의 형상 설계)

  • Kim, Taehyung
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.13-19
    • /
    • 2018
  • In this study, the lightweight design of butterfly valve disc component for power plant based on topology optimization was performed. Here, commercial finite element (FE) analysis software was used. The external shape of the basic disc model was not deformed, and the internal element density was removed to make it lightweight. Optimal design was performed each other after the disc plate and two brackets attached on the surface of the disc were separated. Once the optimal shapes were selected, they were assembled to build up the 3-D lightweight valve disc model. After applying pressure to this model, FE analysis was performed to confirm the structural safety.

Study on Elevator Induced Structural Vibration Reduction Performance Using Polymer Concrete (폴리머 콘크리트를 이용한 엘리베이터 기인 구조 진동저감 성능 연구)

  • Yeom, Jihye;Kim, Jeong-Jin;Park, Junhong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.90-94
    • /
    • 2021
  • With the increased interest on quiescent place for residential place, the noise generation from facilities needs to be minimized. One important noise source include sounds from operation of elevators. The elevator operates between floors and generates significantly annoying sounds to the nearby living spaces. It is recognized as the significant contributor inducing noise annoyance to residents. Elevator is supported to the building structure at several locations for movements between floors. In this study, the vibration reduction by use of polymer concrete on the support location was demonstrated. By measuring and comparing the vibration generation when supported on cement and polymer concrete, the noise reduction performance was evaluated. The polymer concrete was made in the form of being inserted into the wall that imitates the hoistway. The impact vibration was induced to the bracket and vibration transfer magnitude was measured. The damping ratio was evaluated through normalization and curve fitting of transient response, and comparison was performed for each resin mixing ratio. By use of polymer concrete, it was possible to reduce the vibration generation in an effect manner without sacrifice on the structural rigidity.

Lightweight Design and Structural Stability of Wide Impeller for Lage-area Surface Treatment (대면적 표면처리용 광폭 임펠러의 경량 설계 및 구조적 안정성)

  • Kim, Taehyung;Jeong, Junhyeong;Cha, Joonmyung;Seok, Taehyeon;Lee, Sechang
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.18-24
    • /
    • 2020
  • In this study, a lightweight wide impeller for large-area surface treatment was designed and structural stability was confirmed based on finite element(FE) analysis. A lightweight bracket FE model was established through topology optimization, and the optimal FE model was selected after structural analysis. The bending deformation FE analysis was performed, and bending deformation was included in the allowable deformation range. In addition, FE modal analysis was performed, and the range of safe speed(RPM) by rotation was suggested. Ultimately, it was confirmed that this analytical technique is effective for design the lightweight wide impeller.

Investigation of Bracket Deflection Influence on Structural Safety of Scaffold System (브라켓의 변위가 비계 구조 안전성에 미치는 영향 분석)

  • Kim, Dong Hyun;Lee, Hyung Do;Won, Jeong-Hun;Jung, Sung Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.66-73
    • /
    • 2017
  • This study examined the structural behavior of bracket scaffolds reflecting the influence of bracket's deflection. Even though the supporting condition of bracket scaffolds is different to that of general earth-supported scaffolds, there is no clear standards about the installation of bracket scaffolds. To compare the structural behaviors of the earth-supported scaffolds without settlements in columns and those of bracket scaffolds installed on the bracket structure, the finite element analysis was performed. The results show that the differential settlement between the scaffold columns installed on the bracket was occurred due to the deflection of the bracket. The differential settlement gave birth to remarkable secondary stress to the scaffold columns. It is resonable to locate all scaffold columns on the brackets, and if unavoidable situation is faced at a site, the horizontal members should not placed alone without columns on the brackets. Moreover, the structural analysis should be performed to ensure structural safety of bracket scaffolds before installation. In addition, the location of wall connection to the structures is recommended to the scaffolds columns installed on the brackets.

Development and Strength Evaluation of Beam-to-Column Connection Details in Weak Axis of H-shape Column (H형강 기둥의 약축에 대한 기둥-보 접합상세 개발 및 내력평가)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.169-180
    • /
    • 2004
  • One of the most influential elements is the moment resisting beam-to-column connection vis-a-vis the behavior and cost of multistory steel building frames. Majority of these connections are column flange connections attached to beam frames. This is called strong-axis connection. Another type of moment resisting connection commonly found in building frames is the web axis connection. In this type of connection, the beams are attached to the plane of the column web perpendicularly. It is called the weak-axis beam. and it tends to bend the column at its weak axis. In this study, some of the fundamental behaviors of beam-to-column connections were examined by changing the connection details as weil as comparing them with previous connection details. This study sought to develop the details in the beam-to-column connection in the weak axis for middle- and low-rise steel construction systems.

A Study on the Application of Acoustic Emission for the fatigue Test of Ship Welded Structure (선박의 용접구조 피로시험에 대한 음향방출기법의 적용 연구)

  • An, Sung-Chan;Kim, Dae-Soo;Lee, Jin-Hee;Park, Jin-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.220-226
    • /
    • 2003
  • This paper presents the result of an investigation on the application of the acoustic emission method to the monitoring of fatigue crack initiation, growth and track location in welded joints. Fatigue test was carried out for a typical fillet welded joint of ship structure. AE parameter such as ring down count was analyzed in time domain and crack locations were examined by source location and cluster option which is one of the functions of AE signal processor The usability of AE mettled was confirmed for the detection of the initiation and location of through crack.

A Convergent Study on the Structural Analysis of Stabilizer at Light and Large Sized Cars (경차와 대형차에서의 스테빌라이저들의 구조해석에 관한 융합연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.173-177
    • /
    • 2021
  • In this study, the torsional rigidity and durability of the stabilizer models with the hollow axis of light and large sized cars were compared and investigated each other. Model 1 was applied with the moment more than three times as much as model 2, but the maximum deformation of model 1 was seen to be about 2.6 times larger than that of model 2. Commonly, models 1 and 2 are seen to get the most stress at the neck of stabilizer bar link. Also, the maximum stress of model 1 was about 2.9 times larger than that of model 2. Model 1 at large car showed more than 20 times more deformed energy than model 2 at small car. Overall, it could be examined that the deformation energy of the bracket part on the side where the moment fixing the stabilizer bar was applied was greater than that of the stabilizer. It is thought that the analysis results in this study can be helped at the design of its convergent research as a durable component of the stabilizer at a light or large sized car.

Development of All-in-one Attachment Based Steel Pipe Pile Cutting Robot Prototype (강관말뚝 두부정리 및 절단 부위 핸들링 로봇의 프로토타입 개발)

  • Yeom, Dong Jun;Han, Jae Hyun;Jung, Eui Hyun;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.6
    • /
    • pp.115-123
    • /
    • 2018
  • The primary objective of this study is to develop an all-in-one based steel pipe pile cutting robot prototype that improves the conventional steel pipe pile head cutting work in safety, quality, and productivity. For this, the following research works are conducted sequentially; 1)literature review and expert survey, 2)selection of core technology using AHP analysis, 3)deduction of detail design, 4)verification of structural stability, 5)development of full-scale prototype. As a result leveling laser and laser detector(94.46), plasma cutter(96.72), rotary grapple(98.45) are selected as a core technologies. As an outcome, it is analyzed that gripper, cylinder pivot bracket and gripper base are structurally stable. Their maximum stresses are shown as 43.0%, 19.4%, 5.3% compared to their yield strength respectively. The development of full-scale prototype in this study will be utilized for the development of the all-in-one attachment based steel pipe pile cutting robot commercialization model.