지구온난화 및 이상기후의 영향으로 극한홍수의 발생확률 및 규모가 증가함에 따라 수공구조물의 붕괴위험도 함께 증가하고 있다. 대표적인 수공구조물인 제방의 붕괴 시 막대한 붕괴유량이 제내지로 유입되어 많은 침수피해를 발생시킨다. 이러한 피해를 예측하기 위해 붕괴유량을 정확히 파악하는 것이 중요하다. 본 연구에서는 제방붕괴단면의 비대칭성에 따른 붕괴유량의 변화를 분석하였다. 수리실험결과를 통해 제방의 붕괴가 진행됨에 따라 붕괴단면의 비대칭성이 어떻게 변화하는지 BASD를 계산하여 분석하였다. 그 결과, 붕괴유량과 BASD의 관계를 도출할 수 있었다. 또한, 3차원 수치모의를 통해 동일한 조건하에서 붕괴단면의 비대칭성에 따른 붕괴유량의 차이를 비교하였다. 이는 기존에 침수면적을 예측하기 위해 사용한 붕괴단면의 직사각형 가정은 붕괴유량이 과다하게 산정됨을 알 수 있었고 붕괴단면의 BASD에 따라 붕괴부에서 간섭현상이 발생하여 붕괴유량이 감소하는 것으로 나타났다. 범람 수치모의 시 제방붕괴 단면의 BASD를 고려하여 보다 정확한 붕괴유량을 산정한다면 정확한 예상침수면적을 도출할 수 있을 것으로 기대된다.
댐 붕괴형상에 따른 시나리오를 설정하여 DAMBRK모형에 의해 댐 붕괴모의를 실시한 결과 다음과 같은 결과를 얻을 수 있었다. DAMBRK 모형에 의해 댐 붕괴모의를 실시한 결과 붕괴부의 평균 폭이 3 H $_d$ 이고 붕괴부 형성시간이 1시간인 경우(콘크리트 댐과 표면차수벽형 댐의 경우 0.1시간) 최대 첨두홍수량이 발생하는 것으로 나타났다. 밀양댐의 경우 안동댐의 경우에 버금가는 첨두유량을 나타내는 것으로 분석되었으며, 이는 붕괴 양상의 가정에서 평균 폭이 3 H $_d$ 인 경우를 선정한 결과로, 밀양댐의 경우 댐 높이가 89m 로 안동댐의 83m 보다 더 크기 때문에 붕괴부의 규모가 7개 댐 가운데 가장 커지게 되었기 때문이다. 그러나 밀양댐의 경우 저류용량이 작기 때문에 붕괴홍수의 지속시간은 가장 짧은 것으로 분석되었다. 본 연구에서 댐붕괴 수치모의를 한 결과 붕괴시 침두유량에 대하여 하류지역의 대처방안수립과 침수에 따른 피해방지대책 및 대피경로등을 수립할 수 있을 것으로 판단된다.
본 연구에서는 하천의 제방붕괴시 제방의 침식 및 세굴이론에 기초한 범람 홍수량 해석, 시간에 따른 제방붕괴폭의 변화, 침수범위 및 침수위의 추정, 침수 예상 피해규모를 예측할 수 있도록 하천의 유량변화를 고려한 제방붕괴 모형을 개발코자 하였다. 하도구간에서는 홍수시 4점 음해 유한차분기법을 이용하여 하천 홍수위를 예측하며, 제방 붕괴해석을 위해서 제방침식을 고려한 토사이동방정식을 도입하여 물리적 이론에 기초한 제방붕괴 모형을 개발하였다. 제방붕괴모형과 하천해석모형을 이용하여 제방붕괴해석모형으로 통합하였고 연구모형을 실제하도 붕괴사례에 본 모형을 적용한 결과 제방붕괴 기간중의 하천수위, 파제기간, 파제폭 등의 인자들을 합리적으로 모의하고 있었고 개발된 모형이 보다 다양한 실제 하천제방 붕괴사례에 도입되어 적용성 및 정확성이 증명된다면 앞으로 정확한 제방붕괴가 발생한 도시하천의 하천수위 해석, 파제유량 계산, 홍수지도 작성 및 침수위 해석 등에 본 모형이 적용될 수 있을 것으로 판단된다.
본 연구에서는 DAMBRK 모형을 2002년 태풍 루사로 인해 붕괴된 남대천 유역의 장현저수지와 동막저수지에 적용하여 붕괴상황을 재현하였다. 두 저수지는 병렬로 위치하고 있으며, 이 두 저수지의 붕괴 모의를 위해 Relaxation 기법을 DAMBRK 모형에 추가하였다. 그리고 ASDSO (2005)에서 제안한 흙댐 붕괴지속시간과 첨두붕괴유량 산정을 위한 Froehlich 등의 경험공식을 활용한 저수지의 붕괴지속시간 추정 방법을 제안하였다. 제안 방법으로 선정된 붕괴지속시간으로 장현저수지 단일붕괴와 장현 및 동막저수지 연속붕괴에 대해 적용하여 붕괴유출 수문곡선을 계산하였다. 계산된 붕괴유량이 하류로 전파하면서 예상되는 홍수량 및 홍수위를 주요 하도지점에서 계산하고, 유량이 감쇠되는 특성을 해석하였다. 그리고 계산 홍수위와 현장 조사된 홍수위와의 비교를 통해 적용 모형의 매개변수 및 정확성을 검증하였다.
하천 제방붕괴 해석을 위한 FFC-9 모형을 개발하였다. 본 모형은 하천제방의 붕괴해석을 위해 하천의 흐름해석 및 제방붕괴 알고리듬이 결합된 물리적 이론에 기반한 프로그램이다. 개발된 프로그램을 이용하여 낙동강 실제제방의 붕괴해석에 적용하였다. 적용된 제방은 경북 고령의 낙동강 본류 우안에 위치하고 있는 실제제방이 2000년 9월 15일 07:40분경에 붕괴를 시작하였다. 붕괴폭은 110m로 최초에는 60m, 수위 강하시 50m로 붕괴는 지속되었다. 붕괴지점의 제방고는 22.80 m이며 계획 홍수위는 20.26m, 사고당시 하천의 수위는 17.10m, 제내지 수위는 9.80m로서 제내지와 제외지의 수위차는 7.3m였다. 제방 붕괴로 인한 여러 피해중 농경지 침수는 150 ha에 이르렀다.. 연구모형을 2000년 9월 12일 00시${\sim}$18일 23시 기간동안 낙동강 유역의 홍수로 인한 제방 붕괴상황에 대해 적용하였다. 계산구간은 현풍${\sim}$적포교의 33.55 km구간으로서 전체 단면의 개수는 67개이며 평균적인 계산거리간격은 ${\Delta}x$ = 0.5 km 이고 계산시간간격은 0.5 hr이며 제방붕괴시의 계산시간간격은 0.25 hr으로 설정하였다. 이 구간에서의 주요 지류로서는 회천과 황강이 고려되었다. 상류단 경계조건으로서는 현풍 수위표지점의 유량 수문곡선을 사용하였고, 하류단 경계조건으로서는 적포교 수위표지점의 수위 수문곡선을 사용하였다. 본 모형에 적용된 조도계수는 이전의 홍수조건으로부터 검증된 $0.020{\sim}0.033$의 범위를 이용하였다.
댐붕괴 모델링에 관한 연구가 활성화된 시기는 미국 Baldwin Hills 댐(1964)과 Lower Van Norman(San Fernando) 댐(1971) 붕괴 사고 이후이며 1970년대 발생한 Buffalo Creek 댐(서부 버지니아, 1972), Teton 댐(아이다호, 1976), Laurel Run 댐/Sandy Run 댐(펜실바니아, 1977), Kelly Barnes 댐(조지아, 1977) 붕괴 사고로 인해 미국 댐 안전 관리 프로그램의 포괄적 재검토의 필요성이 제기되었다. 국내에서도 연천댐 붕괴(1996년)와 장현저수지와 동막저수지의 붕괴(2002년)로 하류에 위치한 가옥 및 농경지 침수로 인해 재산피해가 발생한 바 있으며, 2005년 비상대처계획 수립을 의무화하는 제도가 도입되었다. 오늘날 댐 붕괴와 붕괴로 인한 유출 수문곡선을 분석하는데 이용 가능한 수많은 도구들이 존재하고 있다. 가장 잘 알려져 있으며 가장 널리 이용되는 모형은 NWS Dam-Break Flood Forecasting Model(DAMBRK; Fread, 1977)이며 국내 댐 저수지 비상대처계획 수립을 위해 많이 이용되고 있다. DAMBRK 모형의 입력자료는 붕괴지속시간, 결괴부측면경사, 최종결괴부바닥표고, 댐붕괴시작수위 등이 요구되며, 이 중 결괴형성과정에 관련된 매개변수의 선정을 위해서는 댐붕괴 사례연구 자료가 활용되고 있다. 모형으로부터 도출된 붕괴유출수문곡선에 대한 적정성 평가는 과거 경험, 공학적 판단, 첨두유량 예측식에 의해 수행되고 있으며 가장 객관적인 기준이라 판단되는 첨두유출량 예측식은 사례연구 자료의 부족으로 인해 높은 불확실성을 안고 있다. 본 연구는 최근까지 개발된 댐결괴 첨두유출량 예측식을 기반으로 국내 건설된 댐의 대다수를 차지하는 필댐에 대해 댐높이, 댐형식별로 예측식의 적정성을 평가하였다.
하천 제방 붕괴로 인한 홍수위험지도를 작성하기 위하여 수치모형을 이용한 잠재적 피해 대상 지역 파악이 선행되어야 한다. 하천제방 붕괴로 인하여 빚어지는 홍수위험지도 작성에서도 흔히 수치모형이 이용되며 붕괴 시 첨두 유량은 결정 인자인 하천의 수량과 제방 붕괴 형성 및 진행에 민감하므로 이런 요소를 포함하는 물리적 모형이 필요하다. 제방 붕괴 메커니즘과 수리학적 현상이 모든 붕괴에 같다고 가정하고 하나의 물리적 제방 붕괴 수치 모형을 구축하였다. 이 연구에서는 하도 추적은 언급하지 않았으며, 단지 제방 붕괴지점에서 수문곡선을 추정하는데 초점을 두어 붕괴 지점의 경계조건을 구축하는데 집중하였다. 여기서 제안된 물리적 모형은 제방 붕괴 형성과정에 필요한 역할과 붕괴를 통한 흐름의 수리학적 설명을 담고 있다.
이상기후 및 극한 홍수 발생빈도의 증가 등으로 인해 많은 수공 구조물이 붕괴 위험에 노출되어 있다. 사전 피해 예방 및 경감을 위해 다양한 수공구조물의 붕괴 현상에 대하여 수리실험적 접근방법을 통한 현상이해 및 예상결과 비교 검증이 필요하다. 그 중에서 제방붕괴에 대한 수리실험은 수치모의를 통한 분석의 어려움 때문에 대부분 모형실험을 통해서 이루어지고 있는 실정이다. 본 연구에서는 실제규모의 제방붕괴 선행실험의 측정결과를 활용하여 실험설계에 이용 하였다. 모형은 실험공간의 규모를 고려하여 축척을 1:10 으로하고, 하도내 흐름 안정을 위해 수로의 길이 는 16, 저폭은 $b\geq10h$를 만족하는 하천으로 설계하여 b를 3m로 설정 하였다. Fr수는 0.29로 원형과 동일하게 하고, 그에 따른 유량 ( )는 0.538m/s로 하였다. 실제 모형 제작에서는 현장 실험실의 펌프용량에 따른 가용유량 ($Q__{max}$)의 제약에 따라 수로가 직선이고 좌우가 대칭인 점을 감안하여 폭을 1/2로 절단 하고 유량은 $0.269m^3/s$(Q/2)를 공급하였다. 위와 같이 모형제작을 위한 실험 설계시 현장 여건을 고려하여 모형을 변형할 경우 EIM(Experimental Information Modeling)을 이용한 수리영향에 대한 분석을 통한 설계검증이 필요하다. FLOW-3D를 이용한 3차원 수치모의를 통하여 동일 지점에서의 유속과 수심을 분석하여 흐름양상을 비교 하였으며, 유속과 수심의 측정위치는 그림 1에 도시하였다. 수치모의 결과 측정지점에서의 수위가 하도 바닥을 기준으로 0.25m로 동일할 경우 수로 단면에 대한 유속 분포가 제방을 기준으로 2b/3까지는 유사한 경향을 보였다. 그 결과, $b\geq10h$인 수로에서 제방붕괴를 위한 모형 설계시 하도 폭을 1/2만 만들 경우에도 실험의 신뢰성이 확보된다는 것을 확인하였다.
댐 붕괴의 유형을 순간적 붕괴와 점진적 붕괴로 구분하였고 각 경우에 대하여 첨두유량의 산정식을 Metric 단위로 환산하여 유도하였다. 기존의 SMPDBK 모형에서 사용된 거리 매개변수의 개념을 도입하고 국내 댐 및 저수지의 자료를 기초로 한 새로운 무차원 홍수추적곡선을 유도하였다. 새로운 추적곡선은 기존의 모형에서 다루지 않은 사류(射流)상태의 경우도 포함하고 있으므로, 산지하천이 많은 국내유역에 적용시킬 수 있도록 하였다. 본 연구에서 유도된 무차원 홍수추적곡선은 Froude 수가 증가됨에 따라 유량감쇠비(流量減衰比)도 증가하고 있는 경향을 보여주었으며, 그 증가율은 Froude 수가 증가함에 따라 감소하고 있었다. 특히, 사류의 경우에서는 Froude 수가 커짐에 따라 그 증가율이 비교적 작게 나타나는 특성을 보이고 있었다. 효기(孝基) 댐 붕괴의 경우에 대하여 본 연구에서 유도한 무차원 홍수추적곡선을 적용한 결과를 실측치 및 동역학적 모형에 의한 계산결과치와 비교할 때, 댐 붕괴 지점에서의 첨두유량, 최고수위 및 홍수파의 도달시간 등에 있어 비교적 잘 일치되었다. 본 연구결과는 국내의 중소 댐에 경제적으로 활용될 수 있을 것으로 기대된다.
본 연구에서는 제방붕괴에 의한 제내지 홍수파 거동 해석의 일환으로 제방붕괴시 제방의 붕괴깊이에 따른 제내지에서의 홍수파의 거동 양상을 수리실험을 통하여 고찰하였다. 다양한 제방붕괴폭과 초기하도수위 및 제방붕괴고 조건에 대해 범람홍수파의 전파속도와 제내지에서의 최대수심의 변화를 실험을 통하여 관찰하였다. 범람홍수파 선단(wave-front)의 이동속도는 동일한 하도수위조건에서는 붕괴고가 높을수록 감소하는 것으로 나타나 제방붕괴시 월류수심 $H_w$가 범람홍수파 전파속도에 영향을 준다는 것을 알 수 있었다. 모든 실험조건에서 최대수심은 일정한 경향을 띠고 있음을 알 수 있었다. 제방인근 지점에서 최대수심이 가장 크게 나타났고, 붕괴부로부터 일정 지점이 지나면 수위가 급격히 감소하여 거리에 관계없이 일정한 최대수심을 유지하는 것을 알 수 있었다. 동일 수위조건이라면 제방붕괴고가 낮을수록 제내지로 유입되는 유량이 증가하여 초기에 제방붕괴부 주위에서 수심이 높아지는 것으로 분석할 수 있다. 실험결과를 이용하여 범람홍수파의 전파속도와 최대수심을 산정하는 식을 무차원변수를 이용하여 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.