• Title/Summary/Keyword: 붕괴메카니즘

Search Result 31, Processing Time 0.019 seconds

A Study on the Failure Mechanisms of the Mixed-face Tunnels in Decomposed Granite (화강토지반내 복합막장터널의 파괴메카니즘 연구)

  • 신종호;이인근
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.317-329
    • /
    • 2001
  • 서울지하철 터널의 상당 구간이 막장면이 풍화토에서 풍화암까지 변화하는 복합화강토지반에 건설되어 왔다. 화강암풍화지반은 심도에 따라 강도의 변화가 크며, 수위가 높고 투수성 지반인 특징을 갖는다. 터널은 주로 비원형 배수터널로 설계되고 NATM 공법으로 시공되었다. 이와 같은 여건의 터널현장에서 발생하였던 붕괴사례를 조사한 결과, 대부분의 붕괴가 터널 어깨 부근으로부터 시작되었고, 구조적으로 완전하지 않은 라이닝, 그리고 지하수와의 연관성 등의 공통적 특징이 확인되었다. 이러한 터널문제는 지반조건, 시공조건, 터널형상 등 경계조건이 복잡하여 한계평형 해석과 같은 종래의 해석적 방법으로 터널안정을 검토하기가 용이하지 않다. 그 가장 큰 이유중의 하나는 터널의 파괴메카니즘에 대한 분명한 정보를 알 수 없는데 있다. 파괴메카니즘의 조사에는 전통적으로 원심모형시험법이 많이 사용되어 왔다. 그러나 화강토지반내의 터널처럼 복잡한 경계조건을 갖는 터널문제에는 적용하기 어렵다. 따라서 이에 대한 하나의 대안으로서 본 논문에서는 지반거동의 비선형성을 고려하는 Coupled 수치해석법을 이용하여 파괴메카니즘을 조사하였다. 수치해석결과의 증분변위벡터, 누적소성편차변형률 그리고 속도특성치(velocity characteristics)의 분석을 통해 실제 붕괴사례와 잘 일치하는 명확한 파괴메카니즘을 파악할 수 있었다. 이로부터 복잡한 경계조건을 갖는 터널 문제의 안정해석을 위한 파괴메카니즘을 조사하는 수치해석적 접근방법을 제시하였다.

  • PDF

No Collapse Design for Typical Bridges (일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.163-172
    • /
    • 2014
  • The purpose of earthquake resistant design for typical bridges is the No Collapse Design and the Earthquake Resistant Design Part of Roadway Bridge Design Code provides a design process to construct the Ductile Failure Mechanism for the bridge structure. However, if it is not practical to provide the Ductile Failure Mechanism due to structure types or site conditions, the Brittle Failure Mechanism is an alternative way to get the No Collapse Design. As well as the existing design process constructing the Ductile Failure Mechanism, the Earthquake Resistant Design Part provides a ductility-based design process as an appendix, which is prepared for bridges with reinforced concrete piers. According to the new design process, designer determines a required response modification factor for substructure and transverse reinforcement for confinement therefrom. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected for which the existing as well as the ductility-based design processes are applied and different results from the two design processes are identified. Based on the results, an earthquake resistant design procedure is proposed in which designers should consider the two design processes.

Analysis of River Levee Failure Mechanism by Piping and Remediation Method Evaluation (파이핑에 의한 하천제방 붕괴 메카니즘 분석 및 대책공법 평가)

  • Kim, Jin-Man;Moon, In-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.600-608
    • /
    • 2017
  • The presence of piping in a levee body allows water seepage to occur by producing a large cavity or water tunnel within it, ultimately resulting in the failure of the river levee and differential settlement. In order to properly cope with river levee failure due to piping and establish a proper remediation method for this problem, it is necessary to analyze the failure mechanism of the river levee due to piping. Therefore, this study analyzed the shape and mechanism of river levee failure due to piping through small-scale and large-scale models and evaluated the seepage pressure distribution characteristics in the hydraulic well, which has been suggested as a remediation method for piping. According to the results of this study, as the safety factor for the piping in the river levee decreased, the river levee failure shape was more clearly shown through the small-scale model test. In the large-scale model test, the type of local damage to the levee due to the piping was identified and the evaluation showed that the hydraulic well had the largest effect on the inhibition of piping below the center of the well. A follow-up study is needed to confirm the reliability of the results. However, it is thought that this study can be utilized as the baseline data for research into the piping-induced river levee failure mechanism and for the preparation of a remediation method.

A Study on the Safety of Lifting Cable for Construction of Coastal Structures (항만건설을 위한 케이슨 들고리의 안전성에 관한 연구)

  • Kwak, Kae Hwan;Jang, Ki Woong;Kim, Jong Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.85-99
    • /
    • 1998
  • This paper describes an experimental study to examine collapse causes of the lifting cable due to brittle failure of an fitting anchor under the lifting works. Also, in this study an collapse mechanism that was obtained from stress analysis was compared with an actual collapse procedure. Fractographical analysis as well as chemical component test, tension test and Charpy V-Notch impact test for the fractured steel members were carried out. And then, its results were compared with that of normal steel members. Circumferential surface flaws were developed at internal facets of the fitting anchor before tensile stress occurred. Hence, a higher stress than nominal stress was occurred at flaws by stress concentration at the crack tip. Also, stress intensity factor of members increased by crack size of the potential flaws. Because the stress intensity factor at the crack tip was greater than critical values(fracture toughness), brittle fracture occurred under the lifting works. It is judged that the main collapse of the lifting cable is due to brittle fracture of the fitting anchor.

  • PDF

Research trends on the automobile crush (자동차 충돌특성 연구동향)

  • 김천욱;한병기;원종진;임채홍
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 1996
  • 자동차의 안전에 대한 연구는 객실의 변형제한과 승객의 감속도 축소를 위한 여러가지 구조부재의 에너지 흡수능력 및 흡수 메카니즘을 연구하는데 초점이 맞추어져 왔다. 그 이유는 충돌사고시에 인명을 보호하기 위해서는 차제변형에 의한 물리적 접촉의 회피 뿐 아니라 충돌에너지를 적절히 흡수조절하여 충돌력을 감소시키도록 구조부재를 설계함으로써 충돌안전성이 확보되기 때문이다. 충돌에너지 흡수 특성은 구조부재의 단면 형상과 재질에 따라 달라지며 압괴모드도 구분되어진다. 즉, 복합재료의 압축붕괴특성은 금속이나 플라스틱 재질과는 다르다. 일반적으로 복합재는 재질의 파손으로 에너지가 흡수되지만 금속재는 소성변형으로 에너지를 흡수한다. 이때의 붕괴양상은 작용하중에 따라 축방향 붕괴, 굽힘붕괴, 측면붕괴의 경우는 정규압괴모드(compact mode) 및 불규칙압괴모드(noncompact mode)로 나뉘고, 원통쉘의 경우는 축대칭모드 및 다이아몬드형 모드 등으로 나뉠수 있다. 원형 및 사각 튜브는 광범위한 형상비와 후폭비를 가지도록 제작할 수 있으며 산업전반에 걸쳐 널리 쓰이므로 충돌특성 연구의 대상으로 많은 연구들이 진행되어 왔다. 또한, 충돌특성의 해석을 위한 이론적 모델이 제시되었으며 계속적인 보완이 이루어져 오고 있다.

  • PDF

Model Tests for Deriving Failure Parameter during Levee Overflow (제방 월류시 붕괴매개변수 도출을 위한 모형실험)

  • Kim, Jin-Man;Cho, Won-Beom;Choi, Bong-Hyuck;Oh, Eun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.11-21
    • /
    • 2015
  • According to the damage investigation in 2002, the failures of river levee were caused by overflow, erosion, and unstable body conditions due to piping, inappropriate embanking materials, and poor compaction. Especially, overflow was identified as a main reason that induces levee failure by 39.5% from the distribution of failure types. The major parameters, such as levee collapsing angle (${\theta}$), levee collapsing rate (k) affect inundation velocity and area size during the analysis of inundation modeling, however, domestic research effort on this area is still insufficient. In this paper authors conducted levee failure experiments of 4 levee height types, 0.20 m, 0.25 m, 0.30 m, and 0.40 m based on theassumption of Froude Similarity (${\lambda}_{Fr}=1$). As a result, the authors suggested a levee failure mechanism according to the levee heights (H), a collapse extension lengthwhich is around, levee collapse angle (${\theta}$), levee collapse rate (k).

Slope Behavior Analysis Using the Measurement of Underground Displacement and Volumetric Water Content (지중 변위와 체적 함수비 계측을 통한 사면 거동 분석)

  • Kim, Yongseong;Kim, Manil;Bibek, Tamang;Jin, Jihuan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.29-36
    • /
    • 2018
  • Several studies have been conducted on monitoring system and automatic measuring instruments to prevent slope failure in advance in Korea and overseas. However, these studies have quite complex structure. Since most of the measurement systems are installed on the slope surface, the researches are carried on the measurement system that detects sign of slope collapse in advance and alerts are still unsatisfactory. In this study, slope collapse experiments were carried out to understand the slope failure mechanism according to rainfall conditions. The water content and displacement behavior at the early stage of the slope failure were analyzed through the measurement of the ground displacement and water content. The results of this study can be used by local government as a basic data for the design of slope failure alarm system to evacuate residents in case of slope failure or landslide due to heavy rainfall.

Reinforcement Method of a Long Span Plastic Greenhouse using Tension-tie (인장타이를 이용한 광폭형 비닐하우스의 보강법)

  • Shin, Kyung-Jae;Shin, Dong-Hui;Lee, Swoo-Heon;Chae, Seoung-Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • A long-span (more than 8m) plastic greenhouse is currently being used in farms due to its magnified benefits, such as the convenience of the farming equipment used, and the land usage efficiency. In this study, the reinforcing effects of the use of a pretension tie were shown. In a previous study, tests for a 6.5m single-span-type greenhouse announced by Rural Development Administration were carried out. The tests of symmetric and eccentrics now loading by the sun and wind were conducted for the 10.2m span with a ${\phi}48.1{\times}2.1$ section in this study, after which the load-deflection relationship was compared for the cases of reinforcement with a tie and without a tie. The results of the symmetric snow loading test showed that the strength increased by 68~93% in the case of the specimen with a tied arch. The failure mode of the specimen without a tie tended to be that with a sway failure mechanism, and that of the reinforcement specimens with a tie tended to be that with an arch buckling mechanism. The results of the eccentric snow loading test showed that the strength of the specimen with a tie increased by 10~20% compared to that of the specimen without a tie. For the failure mode of the latter, a combined failure mechanism was adapted, although the failure mode of the tied specimens tended to be that with an arch buckling mechanism.

Strengthening of an Existing Bridge for Achievement of Seismic Performance (내진성능 확보를 위한 기존교량의 보강)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.181-187
    • /
    • 2009
  • After introduction of the earthquake resistant design code, it is required to achieve seismic performance of existing bridges as well as earthquake resistant design of new bridges. The achievement of seismic performance for existing bridges should satisfy the no collapse requirement based on the basic concept of earthquake resistant design, therefore, various methods with different strengthening scale should be suggested according to bridge types and importance categories. At present for typical bridges, most studied and applied strengthening methods are bearing change, pier strengthening and shear key installation for improvement of seismic performance. In this study a typical existing bridge, for which earthquake resistant design is not considered, is selected as an analysis bridge. Design changes are carried out to satisfy the no collapse requirement by way of the ductile failure mechanism and seismic performances are checked. It is shown that the seismic performance of existing bridges can be achieved by way of redesign of bridge system, e.g. determination of pier design section for substructure and change of bearing function for connections between super/sub-structure.

The Yield-Line Analysis of Reinforced Concrete Slabs Subjected to Loads of Hydrostatical Type (정수압(靜水壓) 형태(形態)의 하중(荷重)을 받는 철근(鐵筋)콘크리트 슬래브의 강복선해석(降伏線解析))

  • Oh, Jue Won;Lee, Kyu Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.37-48
    • /
    • 1984
  • The yield-line analysis is used for earring out the limit analysis of reinforced concrete slabs which are for example like those of vertical walls of tanks subjected to the loads of hydrostatical type. It is considered both isotropic and orthotropic reinforcement using the coefficient of orthotropy with different edge conditions. The yield-line analysis is carried out by using the vertical work method and four collapse mechanisms including the fan mechanisms which is more realistic than over diagonal mechanisms is considered. It is found that the fan mechanisms are more complicated than ever simple diagonal mechanisms which have used for the orthotropically reinforced concrete slabs subjected to hydrostatic pressures. Especially Horton's study is extended in this study, and they are formulated to the constrained multi-variables nonlinear optimization problems, which are solved by the Rosen-Brock Hillclimb Procedure Program and are more critical.

  • PDF