• Title/Summary/Keyword: 불확실 탄성계수

Search Result 43, Processing Time 0.023 seconds

Probabilistic Nonlinear Analysis of Semi-Rigid Frames Considering Random Elastic Modulus (탄성계수 불확실성을 고려한 반강접 프레임 구조의 확률적 비선형 거동 해석)

  • Kim, Dae Young;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.191-198
    • /
    • 2013
  • In this paper, the effects of uncertain material constant on the nonlinear behavior of steel frames with semi-rigid joints are examined. As to the probabilistic model, a normal distribution is assumed to simulate the uncertain elastic modulus of steel material. A nonlinear structural analysis program, which can consider both semi-rigidity in joints of the steel frames and uncertainty in the material constant, is developed. Including the geometric, material and connection nonlinearites which are the parameters of nonlinear behavior of steel frames, probabilistic analysis is conducted based on the Monte-Carlo simulation. In the probabilistic analyses, we consider the three different cases for random variables. The deterministic analysis results are shown to be in good agreement with those of the previous research results in the literature. As to the probabilistic analyses, it is observed that the coefficient of variation(COV) of displacements increases as the loading increases, and that the values of COV are dependent on the structural features of the frames.

A case study on a tunnel back analysis to minimize the uncertainty of ground properties based on artificial neural network (인공신경망 기법에 근거한 지반물성치의 불확실성을 최소화하기 위한 터널 역해석 사례연구)

  • You, Kwang-Ho;Song, Won-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.37-53
    • /
    • 2012
  • There is considerable uncertainty in ground properties used in tunnel designs. In this study, a back analysis was performed to find optimal ground properties based on the artificial neural network facility of MATLAB program of using tunnel monitoring data. Total 81 data were constructed by changing elastic modulus and coefficient of lateral pressure which have great influence on tunnel convergence. A sensitivity analysis was conducted to establish an optimal training model by varying the number of hidden layers, the number of nodes, learning rate, and momentum. Meanwhile, the optimal training model was selected by comparing MSE (Mean Squared Error) and coefficient of determination ($R^2$) and was used to find the correct elastic moduli of layers and the coefficient of lateral pressure. In future, it is expected that the suggested method of this study can be applied to determine the optimum tunnel support pattern under given ground conditions.

Effect of Mix Ingredients on Modulus of Elasticity of High-Strength Concrete (고강도 콘크리트의 탄성계수에 미치는 배합재료의 영향평가)

  • 장일영;박훈규;이승훈;김규동
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • For the design of concrete structures in the serviceability limit state, the uniaxial static modulus of elasticity may be a most important parameter. In particular, this may be so just for a deflection control of the structure. Even in new concrete codes, however, the elastic modulus is normally presented on the form of general empirical relationships with the compressive strength and density of concrete. Normally, there is a large uncertainty associated with the general equations obtained by regression. Thus, in a typical plot of static modulus of elasticity vs. compressive strength, a large scatter can be observed at same strength. The aim of this study is to present the method for obtain the maximum modulus of elasticity at same compressive strength. In the present paper report the effects of mix ingredients on the modulus of elasticity of high-strength concrete. The test of 284 cylinder specimens arc conducted for type I with 11 % replacement of fly-ash cement concretes. Different water-hinder ratio, amounts of water and coarse aggregate as variables were investigated. And also analyzed it statistically by using SAS.

Evaluation of Response Variability of Functionally Graded Material Beam with Varying Sectional Area due to Spatial Randomness in Elastic Modulus along Axial Direction (기능경사재료 변단면 보에서 축방향 탄성계수의 공간적 불확실성에 의한 응답변화도 평가)

  • Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.199-206
    • /
    • 2014
  • In this paper, a scheme to evaluate the response variability for functionally graded material (FGM) beam with varying sectional area is presented. The randomness is assumed to appear in a spatial domain along the beam axis in the elastic modulus. The functionally graded material categorized as composite materials, however without the drawbacks of delamination and occurrence of cracks due to abrupt change in material properties between layers in the conventional composite materials. The functionally graded material is produced by the gradual solidification through thickness direction, which endows continuous variation of material properties, which makes this material performs in a smooth way. However, due to difficulties in tailoring the gradients, to have uncertainty in material properties is unavoidable. The elastic modulus at the center section is assumed to be random in the spatial domain along the beam axis. Introducing random variables, defined in terms of stochastic integration, the first and second moments of responses are evaluated. The proposed scheme is verified by using the Monte Carlo simulation based on the random samples generated employing the spectral representation scheme. The response variability as a function of correlation distance, the effects of material and geometrical parameters on the response variability are investigated in detail. The efficiency of the proposed scheme is also addressed by comparing the analysis time of the proposed scheme and MCS.

A Formulation for Response Variability of Plates Considering Multiple Random Parameters (다중 불확실 인수를 고려한 평판의 응답변화도 산정 정식화)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.789-799
    • /
    • 2007
  • In this paper, we propose a stochastic finite element formulation which takes into account the randonmess in the material and geometrical parameters. The formulation is proposed for plate structures, and is based on the weighted integral approach. Contrary to the case of elastic modulus, plate thickness contributes to the stiffness as a third-order function. Furthermore, Poisson's ratio is even more complex since this parameter appears in the constitutive relations in the fraction form. Accordingly, we employ Taylor's expansion to derive decomposed stochastic field functions in ascending order. In order to verify the proposed formulation, the results obtained using the proposed scheme are compared with those in the literature and those of Monte Carlo analysis as well.

Probabilistic Behavior of In-plane Structure due to Multiple Correlated Uncertain Material Constants (상호 상관관계가 있는 다중 재료상수의 불확실성에 의한 평면구조의 확률론적 거동)

  • Noh Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.291-302
    • /
    • 2005
  • Due to the importance of the parameter in structural response, the uncertain elastic modulus was located at the center of stochastic analysis, where the response variability caused by the uncertain system parameters is pursued. However when we analyze the so-called stochastic systems, as many parameters as possible must be included in the analysis if we want to obtain the response variability that can reach a true one, even in an approximate sense. In this paper, a formulation to determine the statistical behavior of in-plane structures due to multiple uncertain material parameters, i.e., elastic modulus and Poisson's ratio, is suggested. To this end, the polynomial expansion on the coefficients of constitutive matrix is employed. In constructing the modified auto-and cross-correlation functions, use is made of the general equation for n-th moment. For the computational purpose, the infinite series of stochastic sub-stiffness matrices is truncated preserving required accuracy. To demons4rate the validity of the proposed formulation, an exemplary example is analyzed and the results are compared with those obtained by means of classical Monte Carlo simulation, which is based on the local averaging scheme.

Response Variability of Laminated Composite Plates with Random Elastic Modulus (탄성계수의 불확실성에 의한 복합적층판 구조의 응답변화도)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.335-345
    • /
    • 2008
  • In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates, which have been applied to variety of mechanical structures due to their high strength to weight ratios. The applied concept in the formulation is the weighted integral method, which has been shown to give the most accurate results among others. We take into account the elastic modulus and in-plane shear modulus as random. For individual random parameters, independent stochastic field functions are assumed, and the effect of these random parameters on the response are estimated based on the exponentially varying auto- and cross-correlation functions. Based on example analyses, we suggest that composite plates show a less coefficient of variation than plates of isotropic and orthotropic materials. For the validation of the proposed scheme, Monte Carlo analysis is also performed, and the results are compared with each other.

Determination of the Coefficient of Variation of Shear Wave Velocity in Rock Filled Zone of CFRD (Concrete Faced Rock Filled Dam) for Reliability Based Analysis (신뢰성 기반 해석을 위한 국내 CFRD 사력존 재료의 전단파 속도 변동계수 결정)

  • Park, Hyung-Choon;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.17-24
    • /
    • 2017
  • Shear wave velocity (or shear modulus) of rock filled zone of CFRD is very important factor in the evaluation of performance of CFRD under the load such as earthquake. A shear wave velocity profile can be determined by surface wave method but this profile has been uncertainty caused by spatial variation of material property in rock filled zone. This uncertainty in shear wave velocity profile could be evaluated by the reliability based analysis which uses a coefficient of variation of material property to consider uncertainty caused by spatial variation of material property. In this paper, the possible 600 shear wave velocity profiles in rock filled zone of CFRD were generated using the method based on harmonic wavelet transform and 8 shear wave velocity profiles by HWAW method in the field, and the coefficients of variation of shear wave velocity with depth were evaluated for the rock filled zone of CFRD in Korea.

Surrogate Model-Based Global Sensitivity Analysis of Components of a Test Mock-Up Nuclear Containment Building subjected to Internal Pressure (내압을 받는 축소규모 원전 격납건물 구성요소의 대리모델 기반 전역 민감도 분석)

  • Son, Hoyoung;Lee, Jong-Ryun;Ju, Bu-Seog
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.303-304
    • /
    • 2023
  • 확률론적 위험성 평가는 하중, 재료특성 등과 같은 불확실성 인자를 고려하여 구조물의 안전성을 평가하는 기법이지만 모든 불확실성을 고려하는 것은 현실적으로 불가능하다. 또한 원전 격납건물은 콘크리트, 철근, 라이너, 텐던이 복잡하게 결합되어 있다. 따라서 전역민감도 분석을 통해 격납건물의 불확실성 인자 검토하고 선정하는 작업은 필요하다. 따라서 본 연구는 대리모델을 기반으로 축소규모 원전 격납건물의 전역 민감도 분석을 수행하고 격납건물의 주요 영향인자를 분석하고자 한다. 유한요소 해석 모델을 기반으로 대리모델의 학습데이터를 생성하였으며 구축된 대리모델의 성능지표를 분석하였을 때 높은 회귀성능을 갖는 것으로 판단된다. 대리모델을 기반으로 전역 민감도 분석을 수행한 결과 콘크리트의 인장균열이 발생하는 내압수준에서 민감도 지수는 콘크리트의 압축강도가 높지만, 전체적인 내압 구간에서 민감도 지수는 텐던의 탄성계수 및 항복강도가 높은 것으로 나타났다.

  • PDF

Development of Thermal Stress Measuring System (온도응력 측정용 시험장치의 개발)

  • 전상은;김국한;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.228-236
    • /
    • 2001
  • Even though numerous researches have been performed for the prediction of thermal stresses in mass concrete structures by both analytical and experimental means, the limitations exist for both approaches. In analytical approach, the fundamental limitation is derived from the difficulty of predicting concrete properties such as modulus of elasticity, coefficient of thermal expansion, etc.. In experimental approach, there are many uncertainties related to in-situ conditions, because a majority of researches have focused on measuring thermal stresses in actual and simulated structures. In this research, an experimental device measuring thermal stresses directly in a laboratory setting is developed. The equipment is located in a temperature chamber that follows the temperature history previously obtained from temperature distribution analysis. Thermal strains are measured continuously by a strain gauge in the device and the corresponding thermal stresses are calculated simply by force equilibrium condition. For the verification of the developed device, a traditional experiment measuring thermal strains from embedded strain gauges is performed simultaneously. The results show that the thermal strain values measured by the newly developed device agree well with the results from the benchmark experiment.