• Title/Summary/Keyword: 불확실함

Search Result 5,216, Processing Time 0.041 seconds

Factors influencing of uncertainty on patients with arthroscopic surgery (관절경 수술환자의 불확실성에 미치는 영향요인)

  • Jung, Ji-Young;Kim, Min-Suk;Cho, Yu-Na
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.311-319
    • /
    • 2018
  • The purpose of this study was to identify the degree of uncertainty, uncertainty appraisal, and self-efficacy in pre-discharge arthroscopic patients and to investigate the effects of their uncertainty. This study was carried out from April to October 2016 as a descriptive research study. The subjects were presented with pre-discharge convenience sampling after arthroscopic surgery. The data of 131 patients were analyzed by t-test, ANOVA and Scheffe post-test, Pearson correlation coefficient calculation and multiple regression analysis using SPSS 18.0. As the results of this study, education level, presence of spouse, preoperative korean traditional medicine treatment experience and self-efficacy were found to have significant effects on uncertainty. The results of this study suggest that in hospital and pre-discharge education program development to reduce patient uncertainty after arthroscopic surgery.

An Index for Efficient Processing of Uncertain Data in Ubiquitous Sensor Networks (유비쿼터스 센서 네트워크에서 불확실한 데이타의 효율적인 처리를 위한 인덱스)

  • Kim, Dong-Oh;Kang, Hong-Koo;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.3
    • /
    • pp.117-130
    • /
    • 2006
  • With the rapid development of technologies related to Ubiquitous Sensor Network (USN), sensors are being utilized in various application areas. In general, the data sensed by each sensor node on ubiquitous sensor networks are stored into the central server for efficient search. Because update is delayed to reduce the cost of update in this environment, uncertain data can be stored in the central server. In addition, Uncertain data make query processing produce wrong results in the central server. Thus, this paper examines how to process uncertain data in ubiquitous sensor networks and suggests a new index for efficient processing of uncertain data. The index reduces the cost of update by delaying update in uncertainty areas. Uncertainty areas are areas where uncertain data are likely to exist. In addition, it solves the problem of low accuracy in search resulting from update delay by delaying update only for specific update areas. Lastly, we analyze the performance of the index and prove the superiority of its performance by comparing its performance evaluation.

  • PDF

Uncertainty Analysis of Flood Damage Estimation Using Bootstrap Method and SIR Algorithm (Bootstrap 방법 및 SIR 알고리즘을 이용한 예상홍수피해액의 불확실성 분석)

  • Lee, Keon-Haeng;Lee, Jung-Ki;Kim, Soo-Jun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.53-66
    • /
    • 2011
  • We estimated the expected flood damage considering uncertainty which is involved in hydrologic processes and data. Actually, this uncertainty represents a freeboard or safety factor in the design of hydraulic structures. The uncertainty was analyzed using Bootstrap method, and SIR algorithm then the frequency based rainfalls were estimated for each method of uncertainty analysis. Also the benefits for each uncertainty analysis were estimated using 'multi-dimensional flood damage analysis(MD-FDA). As a result, the expected flood damage with SIR algorithm was 1.22 times of present status and Boostrap 0.92 times. However when we used SIR algorithm, the likelihood function should be selected with caution for the estimation of the expected flood damage.

Algorithm for Topological Relationship On an Indeterminate Spatiotemporal Object (불확실한 시공간 객체에 관한 위상 관계 알고리즘)

  • Ji, Jeong-Hui;Kim, Dae-Jung;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.873-884
    • /
    • 2003
  • So far, significant achievements have been studied on the development of models for spatial and spatiotemporal objects with indeterminate boundaries which are found in many applications for geographic analysis and image understanding. Therefore, in this paper we propose the spatiotemporal data model which is applicable for spatial and spatiotemporal objects with uncertainty. Based on this model, we defined topological relationships among the indeterminate spatiotemporal objects and designed the algorithm for the operations. For compatibility with existing spatial models, the proposed model has been designed by extending the spatiotemporal object model which is based on the open GIS specification. We defined indeterminate spatial objects, such as the objects whose position and the shape change discretely over time, and the objects whose shape changes continuously as well as the position. We defined topological relationships among these objects using the extended 9-IM. The proposed model can be efficiently applied to the management systems of natural resource data, westher information, geographic information. and so on.

Extended Information Entropy via Correlation for Autonomous Attribute Reduction of BigData (빅 데이터의 자율 속성 감축을 위한 확장된 정보 엔트로피 기반 상관척도)

  • Park, In-Kyu
    • Journal of Korea Game Society
    • /
    • v.18 no.1
    • /
    • pp.105-114
    • /
    • 2018
  • Various data analysis methods used for customer type analysis are very important for game companies to understand their type and characteristics in an attempt to plan customized content for our customers and to provide more convenient services. In this paper, we propose a k-mode cluster analysis algorithm that uses information uncertainty by extending information entropy to reduce information loss. Therefore, the measurement of the similarity of attributes is considered in two aspects. One is to measure the uncertainty between each attribute on the center of each partition and the other is to measure the uncertainty about the probability distribution of the uncertainty of each property. In particular, the uncertainty in attributes is taken into account in the non-probabilistic and probabilistic scales because the entropy of the attribute is transformed into probabilistic information to measure the uncertainty. The accuracy of the algorithm is observable to the result of cluster analysis based on the optimal initial value through extensive performance analysis and various indexes.

Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach (Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.49-64
    • /
    • 2009
  • Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.

  • PDF

Variability Analysis of Design Flood Considering Uncertainty of Rainfall-Runoff Model and Climate Change (기후변화 영향과 강우-유출 모형의 불확실성을 고려한 설계홍수량 변동성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.365-365
    • /
    • 2012
  • 이수 및 치수를 위한 수공구조물 설계 및 하천기본계획 수립의 요점은 설계홍수량의 산정에 있으며, 통계적으로 유의성을 가지는 설계홍수량을 산정하기 위해서는 일반적으로 30년 이상 관측된 홍수자료가 요구된다. 우리나라의 경우 대부분의 유역이 미계측 유역이거나 관측년수가 비교적 작은 경우가 많으므로, 상대적으로 자료 연한이 긴 강우자료를 빈도분석한 후 이를 강우-유출 모형에 입력하여 확률홍수량을 추정하는 간접적인 방법이 주로 이용되며 사용된 강우의 빈도가 홍수의 빈도와 동일하다는 가정을 기본으로 한다. 그러나 동일한 강우량이 발생하더라도 강우의 강도, 지속시간, 유역의 선행함수조건 등과 같은 유역 특성에 따라 유출의 특성은 현저히 다르게 나타나며 결국 이러한 특성은 입력자료, 강우-유출 모형, 기후변동성 등과 같은 불확실성 요소로 인식될 수 있다. 따라서 본 연구에서는 이러한 불확실성을 고려할 수 있는 강우-유출 모의기법을 개발하여 이를 통해 홍수빈도곡선을 유도할 수 있는 방법론을 제시하고자 한다. 불확실성 분석을 위해 기존 HEC-1 강우-유출 모형에서 Bayesian MCMC 기법을 적용하여 매개변수들의 사후분포를 추정하여 매개변수들의 최적화 및 불확실성 분석을 수행하였다. 마지막으로 기후변화 영향을 통합한 홍수빈도곡선을 유도하기 위해서 극치강수를 모의하는 것이 필요하며, 본 연구에서는 극치값 재현에 있어서 우수한 성능을 발휘하는 Kernel-Pareto Piecewise분포 기반의 강우모의발생 기법을 적용하여 HEC-1모형과 연동되도록 모형을 개발하였다. 본 연구에서 제안하는 방법론은 기존 홍수빈도곡선 유도 방법에서 불확실성을 분석하기 위해 모든 변수들을 독립사상으로 간주하고 Monte Carlo Simulation을 수행함으로서 매개변수들간의 상호연관성, 상관성, 조건부 확률들을 고려할 수 없었던 점을 Bayesian 모형을 통해 매개변수들간의 조건부 확률을 고려한 매개변수의 사후분포 도출을 가능하게 하여 보다 현실적인 강우-유출 관계 도출이 가능하고 불확실성 구간이 자연적으로 도출됨으로서 향후, 신뢰성 있는 수자원 계획수립에 유용한 자료로 활용이 가능할 것으로 판단된다.

  • PDF

Uncertainty Analysis for the Probabilistic Flood Forecasting (확률론적 홍수예측을 위한 불확실성 분석)

  • Lee, Kyung-Tae;Kim, Young-Oh;Kang, Tae-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.71-71
    • /
    • 2012
  • 현재 전 세계적으로 극한강우의 발생빈도가 점차 높아지고 있으며 홍수량 또한 강도가 커지고 있는 것이 현실이다. 하지만 과거의 홍수발생 빈도에 따라 설계된 홍수방어시설들이 점차 한계를 보이고 있으므로 이를 대비하기위한 구조적 대책뿐만 아니라 홍수피해 발생 가능지역에 사전 예경보를 시행하는 비구조적 대책마련 또한 필요하다. 기존의 홍수예측은 확정적인 하나의 유량예측값만을 제공함으로써 신속하고 편리하였지만 이에 대한 불확실성이 큰 경우 예상치 못한 큰 인적 물적 피해를 가져올 수 있다. 이처럼 확률론적 홍수예측의 필요성이 대두되어 지면서 유럽이나 미국등 선진국에서는 EFFS(European Flood Forecasting System)과 NWSRFS(National Water Service River Forecast System)같이 이미 확률론적 홍수예측에 대한 연구 및 기술개발이 활발하게 진행되어지고 있다. 하지만 홍수예측의 확률론적 접근에 있어서는 많은 불확실성들이 내포되어 있으므로 예측시스템에서 생성된 앙상블 유량예측 결과의 신뢰도 분석과 올바른 불확실성 정보의 제공이 필요하다. 본 연구는 확률론적 홍수예측 방법을 국내에 적용시켜서 기상청의 예측시스템 KLAPS(Korea Local Analysis and Prediction System), MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation), UM(Unified Model) 그리고 MOGREPS(Met Office Global Regional Ensemble Prediction System)으로부터 생성된 기상앙상블을 현재 국토해양부 홍수통제소에서 사용하고 있는 강우-유출모형인 저류함수모형(Storage Function Method)의 입력 자료로 사용한다. 확률론적 홍수예측에서 오는 불확실성을 분석하기 위해서 첫 번째로 제공되는 기상예측 시스템의 시 공간적 스케일 및 대상유역의 공간특성에 따라 어떠한 형태로 전파되어지는지를 분석하였다. 두 번째는 각각의 예측시스템들이 선행기간(Lead time)에 따라 불확실성의 특성이 어떻게 나타나게 되는지를 확인하였다. 이러한 불확실성의 특성을 정확하게 파악하게 된다면 예측에 있어서 현재 갖고 있는 문제점들로부터 개선해 나가야 할 방향을 제시해주어 향후연구에 유용하게 활용될 수 있을 것이다.

  • PDF

Assessment of Uncertainty in SWAT Model Derived from Parameter Estimation Using SWAT-CUP (SWAT-CUP 매개변수 추정에 따른 SWAT 모형 불확실성 평가)

  • Yu, Jisoo;Noh, Joonwoo;Cho, Younghyun;Hur, Youngteck;Kim, Yeonsu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.314-314
    • /
    • 2020
  • SWAT (Soil and Water Assessment Tool)은 미국 농무성 농업연구소에서 개발된 준분포형(semi-distributed) 수문 모형으로 복합토지이용유역에서 장기간에 걸친 다양한 종류의 토양, 토지이용 및 토지관리 상태의 변화에 따른 유역의 유출량, 유사량 및 영양물질의 영향을 예측하기 위해 개발되었다. SWAT은 기본적으로 다양한 매개변수에 대한 수동 보정 기능을 제공하고 있지만 매개변수 보정에 따른 모의결과의 불확실성을 수반하게 된다. 이러한 문제를 해결하기 위해 자동보정 기능을 제공하는 SWAT-CUP (Calibration and Uncertainty Program)이 개발되었다. SWAT-CUP에서 제공하는 매개변수의 최적화 과정에서 유사한 모의 결과를 산출하는 수천 개의 매개변수조합이 존재하기 때문에 보정기법의 선택에 따라 최종 매개변수의 값이 달라질 수 있다. 불확실성을 발생시키는 요인으로 (1) 매개변수의 선택, (2) 보정 기법, (3) 목적함수, (4) 매개변수의 초기 범위, (5) 모의(simulation)의 실행(run) 및 반복(iteration) 횟수, (6) 위치, 개수 등 보정 자료의 선택 등이 주로 지목된다. 이러한 요인으로 발생하는 불확실성은 SWAT 모형의 구조 및 입력 자료에서 기인하는 것으로, 사용자의 설정에 따라 크게 좌우된다. 본 연구에서는 SWAT 매개변수 보정 과정에서 발생할 수 있는 불확실성을 평가하고, 효율적인 보정 방안을 제시하기 위해 수행되었다. 낙동강 권역의 내성천 유역을 대상으로 SWAT 모형을 구축하였으며, 내성천 본류에 위치한 수위(유량) 관측소의 자료를 활용하여 검·보정을 수행하였다. 모의 결과는 유량의 크기 뿐 아니라 유량의 발생 시기, 유역의 반응 및 증가·감소 경향성을 함께 고려하여 평가하였다. 그 결과 모형 구조에 따른 불확실성의 전이과정을 정확하게 파악하는 것은 불가능하지만 SWAT 모형의 비고유성(non-uniqueness)에 의한 불확실성을 정량화하여 나타내었다.

  • PDF

The Role of Source Credibility of Streamer and Platform Policy in Live-commerce: A Perspective on Reduction of Consumer's Uncertainty (라이브 커머스 스트리머의 자원 원천 신뢰성과 플랫폼 정책의 역할: 소비자 불확실성 감소의관점)

  • Inho Hwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.2
    • /
    • pp.81-99
    • /
    • 2024
  • Live commerce, a rapidly growing sector, facilitates real-time interaction between streamers and consumers about specific products. This business model aids rational purchasing decisions by offering visual demonstrations of product usage. This study aims to identify potential uncertainties faced by consumers in live commerce and propose strategies to mitigate these uncertainties for streamers and platforms. A research hypothesis was formulated based on prior studies and tested through surveys conducted on consumers aged 20 and above with live commerce experience. The study revealed that a streamer's credibility (trustworthiness, expertness, and reputation) significantly impacts purchase intention by mitigating uncertainty. The platform's return policy also interacted with product uncertainty, influencing consumer purchase intention. These findings provide a roadmap for creating a tailored service strategy for live commerce platforms, focusing on reducing uncertainty in the product purchase process.