• Title/Summary/Keyword: 불확실한 플랜트

Search Result 75, Processing Time 0.017 seconds

Case Study of Friction Piles Driven into Clayey Soils on the Central Coast of Vietnam (베트남 중부 연안의 대심도 점토지반에 시공된 강관 마찰 말뚝의 항타시공관리)

  • Seol, Hoon-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.19-31
    • /
    • 2024
  • In Korea, driven piles are generally penetrated up to weathered rock or harder strata. Friction piles have been used to some extent in the southwest coastal area with deep soils; however, friction piles are not extensively due to uncertainties about construction quality. The embedded pile construction method is primarily used due to noise and vibration complaints. However, in Southeast Asian countries (e.g., Cambodia, Myanmar, and Vietnam), where soft sediments are deep, the driven pile method is commonly used due to its economic advantages. Construction companies are increasingly entering overseas construction markets, e.g., Southeast Asia; thus, it is necessary to understand the behavior of driven friction piles in the soil and improve on-site engineering management to gain market competitiveness in these countries. In this study, the bearing capacity of friction piles driven into clayey coastal soils in Vietnam with time-dependent characteristics was evaluated based on the dynamic and static pile load tests. Based on the results, a modified Danish formula is proposed for on-site quality management.

정성적 시뮬레이션에 의한 화력발전소 보일러 프로세스의 고장진단

  • 김응석;오영일;변승현
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.169-169
    • /
    • 1999
  • 최근 산업 플랜트의 공정제어 시스템은 복잡하고 대규모화되어 고장 발생시 경제적 손실과 위험성이 증폭되어 규정된 안정서와 신뢰성 확보가 필수적이라 할 수 있다. 고장검출 및 진단기법은 시스템의 신뢰성을 높이기 위한 효과적인 방안을 연구하는 것으로 현대에 들어서 많은 학자들의 관심을 끌고 있으며 실제 계통에 점차적으로 응용되고 있다. 현재까지 개발된 고장검출 및 진단기법은 사용된 프로세스 모델의 형태, 고장검출 진단 알고리즘에 따라 다양하게 분류 될 수 있으며 일반적으로 사용된 모델에 따라 크게 1) 정량적 모델에 근거한 해석적 기법, 2) 정성적 모델에 근거한 기법, 3) 지식기반 진단 기법으로 구분 할 수 있다. 이중 정량적 모델 기법은 대상계통의 수학적 모델에 근거하여 운전 데이터를 분석함으로서 고장검출 진단을 수행하는 해석적 기법으로서 근본적으로 계통의 정확한 수학적 모델을 요구하므로 불확실성을 포함한 계통 및 비선형성이 강한 계통등에는 적용이 곤란하다. 정성적 모델 및 지식기반 기법은 정량적 진단 기법과는 달리 대상 프로세스에 대한 수학적 모델 대신에 운전자의 경험과 프로세스 변수간의 상호 작용 및 고장의 전파과정, 고장원인과 증상과의 직접적인 관계에 대한 구조적 지식에 근거한 것으로 고장원인에 대한 계통의 동작을 추론 할 수 있으며, 상황 변화에 따른 영향을 예측할 수 있다. 본 논문에서는 정성적 모델 및 지식기반 기법에 근거한 고장검출 및 진단 기술을 화력 발전소 보일로 프로세스에 적용하여 정성적 시뮬레이션에 의한 설비의 고장을 조기에 발견하여 고장 파급으로 인한 발전 정지 및 설비의 손상 확대를 방지하고 고장 발생시 신속한 원인 규명 및 후속 조치관련 정보들을 운전원에게 제공할 목적으로 현재 전력원에서 개발중인 지능형 경보시스템에 대하여 기술하고자 한다.음과 같이 설명하였다. 서로 상반되는 것들이 다음과 같이 설명하였다. 서로 상반되는 것들이 부딛힘이 없이 공존하고 일상의 논리가 무시된다. 부정, 의심이 없고 확실한 것이 없다. 한 대상에 가졌던 생각이 다른 대상에 옮겨간다(displacement). 한 대상이 여러 대상이 갖고 있는 의미를 함축하고 있다(condensation). 시각적인 순서가 무시된다. 마음속의 생각과 외부의 실제적인 일을 구분하지 못한다. 시간 상의 순서가 있다가 없다가 한다. 차례로 일어나야 할 일이 동시에 한꺼번에 일어난다. 대상들이 서로 비슷해지고 동시에 있을 수 없는 대상들이 함께 나타난다. 사고의 정상적인 구조가 와해된다. Matte-Blance는 무의식에서는 여러 독립된 대상들간의 구분을 없애며, 주체와 객체를 하나로 보려는 대칭화(symmetrization)의 경향이 있기 때문에 이런 변화가 생긴다고 하였다. 또 대칭화가 진행되면 무한대의 느낌을 갖게 되어, 전지(moniscience), 전능(omnipotence), 무력감(impotence), 이상화(idealization)가 나타난다. 그러나 무의식에 대칭화만 있는 것은 아니며, 의식의 사고양식인 비대칭도 어느 정도 나타나며, 대칭화의 정도에 따라, 대상들이 잘 구분되어 있는 단계, 의식수준의 감정단계, 집단 내에서의 대칭화 단계, 집단간에서의 대칭화 단계, 구분이 없어지는 단계로 구분하였다.systems. We believe that this taxonomy is a significant contribution because it adds clarity, completeness, and "global perspective" to workflow architectural discussions. The vocabulary suggested here

  • PDF

Development of Overseas Construction Big Issues based on Analysis of Big Data (빅 데이터 분석을 통한 해외건설 빅 이슈 개발)

  • Park, Hwanpyo;Han, Jaegoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.3
    • /
    • pp.89-96
    • /
    • 2018
  • This study derived big issues in overseas construction through big data analysis. To derive big issues in overseas construction, candidate groups of big issues were identified through big data analysis targeting 53,759 issues including 39,436 issues from major portal sites, 10,387 issues from daily newspapers, and 336 issues in construction magazines from Oct. 1, 2016 to Sep. 30, 2017. The main results are as follows: First, the main issues of overseas construction for the past one year showed that markets were concentrated in Middle East Asia and most of them were low-price order plant projects, which revealed the limitations. Although orders of overseas construction were slightly upward in the first half of 2017 compared to previous year, overseas construction orders are still unstable due to uncertainties in the international affairs and drops in oil prices. Second, the interest topics based on the 8th core keywords of overseas construction among the overseas construction issues for the past one year showed that region (29.9%), corporation environment (22.0%), profitability (17.0%), organizations (15.1%), projects (5.2%), market environment (3.6%), policy and system (3.6%), and education (3.5%) in the order of interest. Third, 10 core issues that have expandability and persistence of discourse were extracted out of 30 issue candidates with regard to eight keywords. Based on the extracted issues, detailed analysis on each of the core issues in overseas construction and correlation analysis between 10 core issues were conducted.

A Prediction of N-value Using Regression Analysis Based on Data Augmentation (데이터 증강 기반 회귀분석을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Lee, Jae Beom;Park, Chan Jin
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.221-239
    • /
    • 2022
  • Unknown geotechnical characteristics are key challenges in the design of piles for the plant, civil and building works. Although the N-values which were read through the standard penetration test are important, those N-values of the whole area are not likely acquired in common practice. In this study, the N-value is predicted by means of regression analysis with artificial intelligence (AI). Big data is important to improve learning performance of AI, so circular augmentation method is applied to build up the big data at the current study. The optimal model was chosen among applied AI algorithms, such as artificial neural network, decision tree and auto machine learning. To select optimal model among the above three AI algorithms is to minimize the margin of error. To evaluate the method, actual data and predicted data of six performed projects in Poland, Indonesia and Malaysia were compared. As a result of this study, the AI prediction of this method is proven to be reliable. Therefore, it is realized that the geotechnical characteristics of non-boring points were predictable and the optimal arrangement of structure could be achieved utilizing three dimensional N-value distribution map.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.