• Title/Summary/Keyword: 불편추정량

Search Result 35, Processing Time 0.023 seconds

Estimation of Reliability of k-out-of-m Stress-Strength Model in the Independent Exponential Case

  • Kim, Jae Joo;Choi, Sung Sup
    • Journal of Korean Society for Quality Management
    • /
    • v.10 no.1
    • /
    • pp.2-6
    • /
    • 1982
  • Suppose a system with m components is subjected to a random stress. We consider the estimation of reliability when data consist of random samples from the stress distribution and the strength distributions. All the distributions are assumed to be independent exponential with unknown scale parameters. An explicit form of system reliability and the minimun variance unbiased estimator are obtained. The asymptotic distribution is also obtained by expanding the minimum variance unbiased estimator about the maximum likelihood estimator and establishing their equivalance. The performance of the two estimators is compared by Monte Carlo Simulation.

  • PDF

An estimation method based on autocovariance in the simple linear regression model (단순 선형회귀 모형에서 자기공분산에 근거한 최적 추정 방법)

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2009
  • In this study, we propose a new estimation method based on autocovariance for selecting optimal estimators of the regression coefficients in the simple linear regression model. Although this method does not seem to be intuitively attractive, these estimators are unbiased for the corresponding regression coefficients. When the exploratory variable takes the equally spaced values between 0 and 1, under mild conditions which are satisfied when errors follow an autoregressive moving average model, we show that these estimators have asymptotically the same distributions as the least squares estimators. Additionally, under the same conditions as before, we provide a self-contained proof that these estimators converge in probability to the corresponding regression coefficients.

  • PDF

An estimation procedure with updated sample (패널조사에서 표본 변경을 고려한 추정)

  • 박진우
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.367-374
    • /
    • 1997
  • In panel surveys it is necessary to manage both sampling frame and sample units across time. When sample is updated according to the change of its frame, it should be incorporated in the estimation procedure. This paper derives the bias of the conventional estimator caused by neglecting the change of sample, and provides a bias-adjusted estimator with its variance.

  • PDF

Autocovariance based estimation in the linear regression model (선형회귀 모형에서 자기공분산 기반 추정)

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.839-847
    • /
    • 2011
  • In this study, we derive an estimator based on autocovariance for the regression coefficients vector in the multiple linear regression model. This method is suggested by Park (2009), and although this method does not seem to be intuitively attractive, this estimator is unbiased for the regression coefficients vector. When the vectors of exploratory variables satisfy some regularity conditions, under mild conditions which are satisfied when errors are from autoregressive and moving average models, this estimator has asymptotically the same distribution as the least squares estimator and also converges in probability to the regression coefficients vector. Finally we provide a simulation study that the forementioned theoretical results hold for small sample cases.

An Estimation Procedure Using Updated Stratification Sample in Panel Survery (패널표본조사에서 층간변동을 고려한 추정방법)

  • 김영원;오명신
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.461-475
    • /
    • 1998
  • In panel survey in which the sample is selected by stratified random sampling, if the sampling units shift from a stratum to others in time, then the movement should be incorporated in the estimation procedures. Dealing with the problem caused by the movement of units across stratum in the updated stratification sample, the bias of the conventional estimator neglecting the movement is investigated, arid the bias-adjusted estimators are proposed. The variance estimator of the suggested estimators is also derived. It is illustrated via a simulation study that the proposed estimators beat the conventional estimator in the sense of bias and mean squared error In particular, when the Neyman allocation is applied in stratified sampling, the proposed estimator is shown much more effective to this end.

  • PDF

A study to improve the accuracy of the naive propensity score adjusted estimator using double post-stratification method (나이브 성향점수보정 추정량의 정확성 향상을 위한 이중 사후층화 방법 연구)

  • Leesu Yeo;Key-Il Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.6
    • /
    • pp.547-559
    • /
    • 2023
  • Proper handling of nonresponse in sample survey improves the accuracy of the parameter estimation. Various studies have been conducted to properly handle MAR (missing at random) nonresponse or MCAR (missing completely at random) nonresponse. When nonresponse occurs, the PSA (propensity score adjusted) estimator is commonly used as a mean estimator. The PSA estimator is known to be unbiased when known sample weights and properly estimated response probabilities are used. However, for MNAR (missing not at random) nonresponse, which is affected by the value of the study variable, since it is very difficult to obtain accurate response probabilities, bias may occur in the PSA estimator. Chung and Shin (2017, 2022) proposed a post-stratification method to improve the accuracy of mean estimation when MNAR nonresponse occurs under a non-informative sample design. In this study, we propose a double post-stratification method to improve the accuracy of the naive PSA estimator for MNAR nonresponse under an informative sample design. In addition, we perform simulation studies to confirm the superiority of the proposed method.

A bias adjusted ratio-type estimator (편향 보정 비형태추정량에 관한 연구)

  • Oh, Jung-Taek;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.397-408
    • /
    • 2018
  • Various methods for accurate parameter estimation have been developed in a sample survey and it is also common to use a ratio estimator or the regression estimator using auxiliary information. The ratio-type estimator has been used in many recent studies and is known to improve the accuracy of estimation by adjusting the ratio estimator. However, various studies are under way to solve it since the ratio-type estimator is biased. In this study, we propose a generalized ratio-type estimator with a new parameter added to the ratio-type estimator to remove the bias. We suggested a method to apply this result to the parameter estimation under the error assumption of heteroscedasticity. Through simulation, we confirmed that the suggested generalized ratio-type estimator gives good results compared to conventional ratio-type estimators.

Parameter Estimation in the Multiplicative Models (승법모형의 모수추정)

  • Chang, Suk-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1995
  • The parameters in the multiplicative model $Y_{1}={\alpha}_{0}{\prod}^{p}_{k=1}X_{kj}^{{\beta}_K}v_{j}$ are usually estimated by the least squares method after logarithmic transformation, and the least square Estimator of ${\alpha}_{0}$ is known to be biased, i.e., $E(e xp(\hat{\beta}_{0})){\neq}{\alpha}_{0})$. In the present study the unbaised estimators of ${\alpha}_{0}$ are examined(1) by modifying the least squares estimator and (2) by applying the Finney's results. The variances are also compared. In addition it has been observed that multiplicative model can be used to express the relationship beetween rice yield and yield components.

  • PDF

Estimation for Mean Time Between Failures of a Repairable System. (수리가능한 시스템의 평균고장간격시간 추정에 관한 연구)

  • 이현우;김치용
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.1
    • /
    • pp.203-211
    • /
    • 1999
  • 수리 가능한 시스템의 평균고장간격시간에 대한 많은 연구들이 진행되어 왔으며, 그 대부분은 n번째 고장발생시각 $T_n$을 관측한 후 그 다음 고장이 발생할 때까지의 평균시간, 즉 E($T_{n+1}$-$T_n$$\mid$$T_n$ = $t_n$)에 관한 연구들이었다. 본 연구에서는 수리가능한 시스템의 고장이 와이블과정을 따라 일어날 경우, n번째와 n+1번째 고장간의 평균고장간격시간 E($T_{n+1}$-$T_n$)에 대한 불편추정량을 구하고 일치성 및 근사적 정규성을 증명하였다.

  • PDF