Suppose a system with m components is subjected to a random stress. We consider the estimation of reliability when data consist of random samples from the stress distribution and the strength distributions. All the distributions are assumed to be independent exponential with unknown scale parameters. An explicit form of system reliability and the minimun variance unbiased estimator are obtained. The asymptotic distribution is also obtained by expanding the minimum variance unbiased estimator about the maximum likelihood estimator and establishing their equivalance. The performance of the two estimators is compared by Monte Carlo Simulation.
A few simple methods to find $L_1$-unbiased estimators for location and scale parameters are summarized and examples utilizing diffusivity, a natural measure of dispersion for $L_1$-unbiased estimators, are given.
Journal of the Korean Data and Information Science Society
/
v.20
no.2
/
pp.251-260
/
2009
In this study, we propose a new estimation method based on autocovariance for selecting optimal estimators of the regression coefficients in the simple linear regression model. Although this method does not seem to be intuitively attractive, these estimators are unbiased for the corresponding regression coefficients. When the exploratory variable takes the equally spaced values between 0 and 1, under mild conditions which are satisfied when errors follow an autoregressive moving average model, we show that these estimators have asymptotically the same distributions as the least squares estimators. Additionally, under the same conditions as before, we provide a self-contained proof that these estimators converge in probability to the corresponding regression coefficients.
In panel surveys it is necessary to manage both sampling frame and sample units across time. When sample is updated according to the change of its frame, it should be incorporated in the estimation procedure. This paper derives the bias of the conventional estimator caused by neglecting the change of sample, and provides a bias-adjusted estimator with its variance.
Journal of the Korean Data and Information Science Society
/
v.22
no.5
/
pp.839-847
/
2011
In this study, we derive an estimator based on autocovariance for the regression coefficients vector in the multiple linear regression model. This method is suggested by Park (2009), and although this method does not seem to be intuitively attractive, this estimator is unbiased for the regression coefficients vector. When the vectors of exploratory variables satisfy some regularity conditions, under mild conditions which are satisfied when errors are from autoregressive and moving average models, this estimator has asymptotically the same distribution as the least squares estimator and also converges in probability to the regression coefficients vector. Finally we provide a simulation study that the forementioned theoretical results hold for small sample cases.
In panel survey in which the sample is selected by stratified random sampling, if the sampling units shift from a stratum to others in time, then the movement should be incorporated in the estimation procedures. Dealing with the problem caused by the movement of units across stratum in the updated stratification sample, the bias of the conventional estimator neglecting the movement is investigated, arid the bias-adjusted estimators are proposed. The variance estimator of the suggested estimators is also derived. It is illustrated via a simulation study that the proposed estimators beat the conventional estimator in the sense of bias and mean squared error In particular, when the Neyman allocation is applied in stratified sampling, the proposed estimator is shown much more effective to this end.
Proper handling of nonresponse in sample survey improves the accuracy of the parameter estimation. Various studies have been conducted to properly handle MAR (missing at random) nonresponse or MCAR (missing completely at random) nonresponse. When nonresponse occurs, the PSA (propensity score adjusted) estimator is commonly used as a mean estimator. The PSA estimator is known to be unbiased when known sample weights and properly estimated response probabilities are used. However, for MNAR (missing not at random) nonresponse, which is affected by the value of the study variable, since it is very difficult to obtain accurate response probabilities, bias may occur in the PSA estimator. Chung and Shin (2017, 2022) proposed a post-stratification method to improve the accuracy of mean estimation when MNAR nonresponse occurs under a non-informative sample design. In this study, we propose a double post-stratification method to improve the accuracy of the naive PSA estimator for MNAR nonresponse under an informative sample design. In addition, we perform simulation studies to confirm the superiority of the proposed method.
Various methods for accurate parameter estimation have been developed in a sample survey and it is also common to use a ratio estimator or the regression estimator using auxiliary information. The ratio-type estimator has been used in many recent studies and is known to improve the accuracy of estimation by adjusting the ratio estimator. However, various studies are under way to solve it since the ratio-type estimator is biased. In this study, we propose a generalized ratio-type estimator with a new parameter added to the ratio-type estimator to remove the bias. We suggested a method to apply this result to the parameter estimation under the error assumption of heteroscedasticity. Through simulation, we confirmed that the suggested generalized ratio-type estimator gives good results compared to conventional ratio-type estimators.
Journal of the Korean Data and Information Science Society
/
v.6
no.1
/
pp.1-11
/
1995
The parameters in the multiplicative model $Y_{1}={\alpha}_{0}{\prod}^{p}_{k=1}X_{kj}^{{\beta}_K}v_{j}$ are usually estimated by the least squares method after logarithmic transformation, and the least square Estimator of ${\alpha}_{0}$ is known to be biased, i.e., $E(e xp(\hat{\beta}_{0})){\neq}{\alpha}_{0})$. In the present study the unbaised estimators of ${\alpha}_{0}$ are examined(1) by modifying the least squares estimator and (2) by applying the Finney's results. The variances are also compared. In addition it has been observed that multiplicative model can be used to express the relationship beetween rice yield and yield components.
수리 가능한 시스템의 평균고장간격시간에 대한 많은 연구들이 진행되어 왔으며, 그 대부분은 n번째 고장발생시각 $T_n$을 관측한 후 그 다음 고장이 발생할 때까지의 평균시간, 즉 E($T_{n+1}$-$T_n$$\mid$$T_n$ = $t_n$)에 관한 연구들이었다. 본 연구에서는 수리가능한 시스템의 고장이 와이블과정을 따라 일어날 경우, n번째와 n+1번째 고장간의 평균고장간격시간 E($T_{n+1}$-$T_n$)에 대한 불편추정량을 구하고 일치성 및 근사적 정규성을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.