• Title/Summary/Keyword: 불완전 연소

Search Result 100, Processing Time 0.022 seconds

Growth Characteristics and Hydrocarbon Patterns of Flammable Liquid on a Vinyl Layer (비닐장판 위에서 연소된 인화성 액체의 성장 특성과 탄화 패턴)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.15-21
    • /
    • 2018
  • This study examined the growth characteristics and carbonization pattern when a fire occurs due to a flammable liquid sprinkled on a vinyl floor. When acetone was sprinkled on a floor, the flame reached its peak in approximately 0.2 s after it was ignited. The lower part of the flame showed a laminar pattern while the upper part showed a turbulent pattern. The pattern showed a turbulent pattern and generated white smoke. The combustion completed floor surface showed carbonization of a dim pore pattern. In the case of benzene, an intense flame was formed in approximately 0.6 s after ignition. The flame length was measured to be approximately 50 mm. When the flame became weak, a significant amount of black smoke was generated due to incomplete combustion. The combustion completed floor surface showed carbonization of a pour pattern and splash pattern. In the case of alcohol, an intense flame was formed in approximately 1.1 s after ignition. In addition, the depth of carbonization was significant where the flammable liquid was collected and a trace of carbonization was observed at the boundary of the flow path of the flammable liquid.

Emission Characteristics of Black Carbons Generated by Wood Combustion through a Stove (목재연료 사용에 따른 블랙카본의 배출특성)

  • Yi, Chi Yeong;Choi, Bong Seok;Sa, Jae Hwan;Jeon, Eui-Chan;Choi, Sang Jin;Park, Seong Kyu
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.41-49
    • /
    • 2013
  • Recent findings have revealed that black carbon is one of the substantial materials affecting climate change along with greenhouse gases. Usually, black carbon is generated by incomplete combustion of biomass and deposited on snow and ice surface, resulting in increasing adsorption of radiant energy and accelerating ice melting. However, it is still questionable what the emission characteristics of black carbons from biomass combustion is. We investigated the emission characteristics of black carbon generated from a wood stove in this study. We found that the emission of black carbon was highly dependent upon combustion temperature and the amount of combustion air supplied. The emission factors were 1.01 g-BC/kg-Oak for fireplace wood burning under incomplete combustion, 0.37 g-BC/kg-Oak for fireplace wood burning under complete combustion and 0.29 g-BC/kg-Oak for small wood-stove burning.

A Numerical Calculation for the Optimum Operation of Cyclone-based Combustion System (선회류 방식 연소시스템의 최적 조업을 위한 수치해석)

  • Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Kim, Ji-Won;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1005-1012
    • /
    • 2011
  • This research carried out a 3-dimensional simulation using computerized fluid dynamics (CFD) for the flow characteristics, temperature distribution, velocity distribution and residence time, etc. in a reactor in order to derive the optimal combustion conditions of an innovative combustion system. The area-weighted average temperature of the outlet of a furnace during combustion at a condition of fuel input rate 1.5 ton/hr, residence time 1.25 sec and air/fuel ratio 2.1 was $1,077^{\circ}C$, which is a suitable temperature for energy recovery and treatment of air pollutants. Exhaust gas is discharged through a duct at a 40~50 m/s maximum speed along strong vortexes at the center of a combustion chamber, so strong turbulence is created at the center of a combustion chamber to enhance the combustion speed and combustion efficiency. In this system, the optimum operation conditions to prevent incomplete combustion and suppress the formation of thermal NOx were air/fuel ratio 1.9~2.1 and fuel input rate 1.25~1.5 ton/hr.

A Study on the Combustion Characteristic in Hybrid Rocket Motor using PE/$LN_2O$ (PE/$LN_2O$ 하이브리드 로켓 모터의 연소특성에 관한 연구)

  • Kim, Gi-Hun;Lee, Jung-Pyo;Kim, Soo-Jong;Cho, Jung-Tae;Kim, Hak-Chul;Woo, Kyoung-Jin;Sung, Hong-Gye;Moon, Hee-Jang;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.233-236
    • /
    • 2009
  • In this study, the characteristic of the hybrid rocket motor with $LN_2O$(Liquid Nitrous oxide) was investigated experimentally. HDPE(High Density PolyEthlene) was used as fuel with different sized single port. When used $LN_2O$, combustion efficiency is lower than using $GN_2O$(Gas Nitrous oxide), because of completeness of vaporization of droplet and mixing. And regression rate was changed by different oxidizer phase. This behavior was considered that flame temperature and combustion of solid fuel front/end surface.

  • PDF

Facilitated Transport Membranes Based on PVA-g-PAA Graft Copolymer (PVA-g-PAA 가지형 공중합체 기반 촉진수송 분리막)

  • Park, Min Su;Kang, Miso;Park, Bo Ryoung;Kim, Jeong-Hoon;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.212-218
    • /
    • 2021
  • It is inevitable to generate incomplete combustion gases when mankind utilizes fossil fuels. From this point of view, gas separation process of combustion gas suggests the possibility of recycling CO gas. In this study, we fabricated a facilitated transport polymeric composite membrane for CO separation using AgBF4 and HBF4. The copolymer was synthesized via free-radical polymerization of poly(vinyl alcohol) (PVA) as a main chain and acrylic acid (AA) monomer as a side chain. The polymer synthesis was confirmed by FT-IR and the interactions of graft copolymer with AgBF4, and HBF4 were characterized by TEM. PVA-g-PAA graft copolymer membranes showed good channels for facilitated CO transport. In this perspective, we suggest the novel approach in CO separation membrane area via combination of grafting and facilitated transport.

Evaluation of the Amount of Gas Generated through Combustion of Wood Charcoal and Agglomerated Charcoal Depending on Air Ventilation (숯과 성형숯의 연소를 통해 배출되는 가스 발생량 및 실내공간 환기량 평가)

  • JU, Young Min;JEONG, Hanseob;CHEA, Kwang-Seok;AHN, Byung-Jun;LEE, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.847-860
    • /
    • 2020
  • This study was conducted into combustion characteristics and gases generated by the combustion of charcoal and agglomerated charcoal distributed in the domestic using a combustion chamber based on the average space per crater of a charcoal-grilled restaurant in South Korea. Each of the three types of charcoals and agglomerated wood charcoals was analyzed for fuel and combustion characteristics. In addition, the concentration changes of CO, CO2, NOx, and O2 were measured for 20 minutes depending on ventilation. As a result, CO yield without ventilation was measured in the range of 1390 to 4703 ppm, and CO yield with ventilation decreases about 29.8% to 57.4%. CO2 yield without ventilation was measured in the range of 1.34% to 2.42%, and CO2 yield was about 44.1% to 53.6% when the emission was more than about 1.5% at 10 minutes. The NOx yield was divided into two cases where the NOx yield was continuously increased because of incomplete combustion, emitted ranging from 29 ppm to 47 ppm, and where emission was constant after 1 minute in the range of 9 ppm to 18 ppm. The NOx yield with ventilation tends to be similar to the without ventilation, and NOx yield decreases up to 62.5%. Therefore, it could be used for health risk assessment with the simulation of the usage environment of charcoal and agglomerated wood charcoal.

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 2 : NOx/CO emission Characteristics, Temperature Characteristics and Flame Structures (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 2 : NOx/CO 배출특성, 온도특성, 화염구조)

  • Lee, Min Chul;Yoon, Jisu;Joo, Seong Pil;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.639-648
    • /
    • 2013
  • This paper describes on the NOx/CO emission characteristics, temperature characteristics and flame structures when firing coal derived synthetic gas especially for gases of Buggenum and Taean IGCC. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Nitrogen addition caused decrement in adiabatic flame temperature, thus resulting in the NOx reduction. At low heat input condition, nitrogen dilution raised the CO emission dramatically due to incomplete combustion. These NOx reduction and CO arising phenomena were observed at certain flame temperature of $1500^{\circ}C$ and $1250^{\circ}C$, respectively. As increasing nitrogen dilution, adiabatic flame temperature and combustor liner temperature were decreased and singular points were detected due to change in flame structure such as flame lifting. From the results, the effect of nitrogen dilution on the NOx/CO and flame structure was examined, and the test data will be utilized as a reference to achieve optimal operating condition of the Taean IGCC demonstration plant.

Equilibrium Analysis on the Pyrotechnic Reactions of Igniters (열역학 평형 계산을 이용한 점화제의 점화반응 분석)

  • Eom, Ki Heon;Kim, Kyung Min;Won, Yong Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1036-1037
    • /
    • 2017
  • This study investigated the aging reactions of three kinds of igniters(BKNO3, THPP, ZPP). The life-time of igniter depends on oxygen and moisture in the air. For example, Magnesium contained in the $BKNO_3$ reacts with oxygen and water to form oxide and hydrate. This reaction has an adverse effect on ignition reaction and could be information to analyze aging. Thermodynamic calculation could interpret the aging reaction by calculating flame temperature applying several variables(initial temperature, composition, etc.). If combustion is not completed because of aging igniters, flame temperature will be formed at a low range. The result of this research is expected to support the analysis of igniters aging reactions.

  • PDF

Study on Fuel Specificity and Harmful Air Pollutants Factor of Agglomerated Wood Charcoal (시중에 유통되고 있는 성형목탄의 연료특성과 유해인자에 대한 연구)

  • JEOUNG, Taek Yong;YANG, Seung Min;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.253-266
    • /
    • 2020
  • This study selected three types of agglomerated wood charcoal (Agglomerated wood charcoal with charcoal powder, Carbonized wood briquette, Ignition-type of perforated charcoal) that are in circulation in Korea among fuel-type wood products and analyzed the fuel characteristics, harmful substance content, and emissions of air pollutants generated by combustion. The first results showed that charcoal-grilled carbon, which is the raw material of charcoal, produced higher CO than saw-billed carbon. The second result is that the emission standards of air pollutants generated by the combustion of molded wood coal are not up to the emission standards of nitrogen oxides and sulfur oxides in the entire product, compared with the emission criteria of the atmospheric environment preservation method (based on 2019, carbon monoxide: 200 ppm, nitrogen oxides, 150 ppm sulfur oxides: 100 ppm), but the carbon dioxide moulding and carbon dioxide levels were not up. Based on the analysis of combustion gas generated during combustion derived from this study, future research is needed for comparing with the emission standards of pellets, which are wood products for fuel, among the existing biomass burning standards and for reducing carbon monoxide generated during incomplete combustion of agglomerated wood charcoal.

Combustion Properties of Major Wood Species Planted in Indonesia (인도네시아 주요 조림수종의 연소특성)

  • Park, Se-Hwi;Jang, Jae-Hyuk;Hidayat, Wahyu;Qi, Yue;Febrianto, Fauzi;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.768-776
    • /
    • 2015
  • This study was performed to understand combustion properties four major Indonesian wood species such as Albizia, Gmelina, Mangium and Mindi were investigated by cone-calorimeter for better utilization of theses wood species. Heat release rate (HRR), total heat release (TSR), specific mass loss rate (SMLR), effective heat of combustion (EHC), time to ignition (TTI), flame time (FT), specific extinction area (SEA), smoke production rate (SPR) and CO compound production rate were measured. HRR, THR and FT were proportional to the density of woods. Albizia showed the highest HRR, while Mindi had the lowest HRR. For SPR, Albizia showed the highest value due to its higher SEA. On the other hand, Mindi had the lowest SPR due to a lower SEA value. The highest smoke emission was for Albizia at the beginning of combustion. After 300 seconds, smoke emission of Gmleina and Mangium was increased greatly. Mangium and Mindi showed the highest total carbon dioxide emission. Expecially, Gmelina released the highest carbon monoxide during the combustion period and presented three times higher $CO/CO_2$ ratio than those of other species due to incomplete combustion.