• Title/Summary/Keyword: 불연재료

Search Result 131, Processing Time 0.023 seconds

An Experimental Study on the Development of Lightweight Foamed Concrete as Sandwich Panel Core (샌드위치 패널 심재용 경량기포콘크리트 개발에 관한 실험적 연구)

  • Lee, Sang-An;Chun, Woo-Young;Ko, Kwan-Ho;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.557-560
    • /
    • 2008
  • This was done by analyzing the sandwich panels that are now widely used in construction work. Sandwich panels are used for diverse purposes in construction work worldwide. In Korea, polystyrene panels that have organic materials as their core material are used. These panels are thus very vulnerable to fire, with risks of core melting, sheet deformation, and hazardous gases. Accordingly, sandwich panels' fire-resistant or non-flammable properties must be secured. To solve these problems, the optimal mixing proportion of lightweight foamed concrete for the sandwich panel core was determined. A new method of doing this was introduced that is completely different from the existing method, wherein a foaming agent is added to realize lightweight concrete. For lightweight concrete, the foaming mechanisms via diverse chemical reactions were identified, H$_2$O$_2$ was added for heating in the reaction, and the concrete foaming was maximized. Through diverse experiments to determine the optimal mixing proportion of lightweight foamed concrete and to examine the filling characteristic of lightweight foamed concrete for sandwich panel cores using waste materials, the physical and mechanical properties of lightweight foamed concrete were examined.

  • PDF

Evaluation of Seismic Damage for RC Bridge Piers I : Theory and Formulation (철근콘크리트 교각의 지진손상 평가 I : 이론 및 정식화)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.31-40
    • /
    • 2002
  • The purpose of this study is to investigate the seismic behavior of RC bridge piers and to provide the data for developing improved seismic design criteria. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. n boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. In the companion paper, the proposed numerical method for seismic damage evaluation of RC bridge piers is verified by comparison with the reliable experimental results.

Size Effect of Specimen and Aggregate on Fracture Characteristics of Cemented Sand (경화 모래의 파괴 특성에 대한 시료 및 입자의 크기 영향)

  • Kim Tae-Hoon;Lee Kang-Il;Im Eun-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.45-55
    • /
    • 2004
  • In the past it has been often observed that the shear stresses at failure are much smaller than the shear strength obtained from traditional laboratory tests and conventional analysis technique is inadequate in stiff soil, such as cemented sand. Many researchers have brought attention to the fact that the presence of flaws i.e. fissures, cracks, joints have a great effect on the strength and overall stress-strain behavior of such materials. They have thought that fracture mechanics may appropriately be adopted as a good tool for analysis of these materials. However, the use of fracture mechanics concept especially for cemented sands is faced with difficulties in obtaining relevant parameters, because fracture parameters and predictions are highly dependent on the material constituents and the size of specimens as well as the size of particles. This paper addresses the effects of sizes which include specimen and aggregate on fracture properties of cemented sand. The results of laboratory tests show that the sizes of specimens and particle have a great effect on the fracture properties such as nominal strength of cemented sand.

Planting-Ability Valuation of Porous Concrete Using Industrial By-Products (산업부산물을 이용한 포러스콘크리트의 식생능력평가)

  • 박승범;이봉춘;김정환;윤덕열
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.623-629
    • /
    • 2002
  • Porous concrete enables water and air to pass through a firmly hardened material and allows required nutrients to reach roots of plants. The purpose of this study is to analyze void ratio, strength property and planting ability when using silica fume and fly ash, the change of aggregate gradation and ratio of paste to aggregate. The results of an experiment from the planting ability of the porous concrete to its influence on the compressive strength are reported in this paper. As a result of the experiment, the compressive strength is higher when the gradation of aggregate is smaller, and it also goes higher when the ratio of paste to aggregate gets larger. The planting ability of porous concrete is decided by the germination and the grass length of perennial ryegrass. The grass length of perennial ryegrass is longer when the gradation of aggregate is greater and the ratio of paste to aggregate gets smaller. Therefore the efficiency of planting goes through the perennial ryegrass is in compliance with the void ratio, aggregate gradation.

Force-based Coupling of Peridynamics and Classical Elasticity Models (페리다이나믹과 탄성체 모델의 연성기법 개발)

  • Ha, Youn Doh;Byun, Taeuk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • In solid mechanics, the peridynamics theory has provided a suitable framework for material failure and damage propagation simulation. Peridynamics is computationally expensive since it is required to solve enormous nonlocal interactions based upon integro-differential equations. Thus, multiscale coupling methods with other local models are of interest for efficient and accurate implementations of peridynamics. In this study, peridynamic models are restricted to regions where discontinuities or stress concentrations are present. In the domains characterized by smooth displacements, classical local models can be employed. We introduce a recently developed blending scheme to concurrently couple bond-based peridynamic models and the Navier equation of classical elasticity. We demonstrate numerically that the proposed blended model is suitable for point loads and static fracture, suggesting an alternative framework for cases where peridynamic models are too expensive, while classical local models are not accurate enough.

A Characteristic Study of Inorganic Insulation Using Balloon Pearlite (발룬 펄라이트를 사용한 무기단열재의 특성 연구)

  • Jeon, Chanki;Park, Jongpil;Chung, Hoon;Lee, Jaeseong;Shim, jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.292-299
    • /
    • 2016
  • The insulation in buildings is very important. Insulation used in the building is largely divided into organic and inorganic insulation by its insulation material. Organic insulations material which are made of styrofoam or polyurethane are extremely vulnerable to fire. On the other hand, inorganic insulation such as mineral-wool and glass-wool are very week with moisture while they are non-flammable so that its usage is very limited. In this study, inorganic heat insulating material developed and the properties of thermal conductivity evaluated. The thermal conductivity and the water absorption of the sample in less than 50mm thickness of the board is less than 0.05W/mk, 3.0%. Bending strength and the water repellency is more than $25N/cm^2$, 98%.

A Study on Fire Prevention Measures through Candle Fire Case and Reproduction Experiment (촛불화재사례 및 재현실험을 통한 화재예방대책 연구)

  • Lee, Jeong-Il;Kim, Young-Soo
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.12-19
    • /
    • 2019
  • Purpose: The purpose of the study is to reduce the fire of the same type by analyzing the form which is mainly generated based on the result of the fire investigation through the experiment to reproduce, since the candle fire is repeated every year with the same type. Methods: For the analysis of candle flame, 4 kinds of methods such as acrylic recharge test, FOMEX acrylic recharge test, general combustible recharge test, and natural fire extinguishing test of candle were conducted. Results: It was confirmed that continuous burning is difficult to be achieved without contact of combustible materials around. Conclusion: In order to prevent a candle fire, it is important to check the safety of the surrounding area. It is also considered to introduce safety regulations such as finishing with a fireproof material such as a silver foil at the terminal end.

An In-silico Simulation Study on Size-dependent Electroelastic Properties of Hexagonal Boron Nitride Nanotubes (인실리코 해석을 통한 단일벽 질화붕소 나노튜브의 크기 변화에 따른 압전탄성 거동 예측연구)

  • Jaewon Lee;Seunghwa Yang
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.132-138
    • /
    • 2024
  • In this study, a molecular dynamics simulation study was performed to investigate the size-dependent electroelastic properties of single-walled boron nitride nanotubes(BNNT). To describe the elasticity and polarization of BNNT under mechanical loading, the Tersoff potential model and rigid ion approximation were adopted. For the prediction of piezoelectric constants and Young's modulus of BNNTs, piezoelectric constitutive equations based on the Maxwell's equation were used to calculate the strain-electric displacement and strain-stress relationships. It was found that the piezoelectric constants of BNNTs gradually decreases as the radius of the tubes increases showing a nonnegligible size effect. On the other hand, the elastic constants of the BNNTs showed opposites trends according to the equivalent geometrical assumption of the tubular structures. To establish the structure-property relationships, localized configurational change of the primarily bonded B-N bonded topology was investigated in detail to elucidate the BNNT curvature dependent elasticity.

Performance Evaluation for Repair of Composite Maintenance Robot Using Carbon Fiber Spray Method (탄소섬유 분사형 복합재 유지보수 로봇의 보수성능평가)

  • Geun-Su Song;Dae-Ham Cheon;Jae-Youl Lee;Kwang-Bok Shin
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.76-85
    • /
    • 2024
  • In this paper, a composite maintenance robot using carbon fiber spray method was developed that automatically sprays mixture was created for repair to damaged areas to repair them. To develop a robot, a repair process was developed in which a mixture of milled carbon fiber, epoxy resin, and hardener is sprayed and consolidated on the damaged area. To automate the repair process, an EOAT based on a collaborative robot was developed that can automatically suction and spray the mixture onto the damaged area. To evaluate the repair performance of the robot, 0° and 90° unidirectional specimens were manufactured and tested in accordance with ASTM D3039. Tests were performed on undamaged specimen, damaged specimen, and repaired specimen by a robot after damaged. As a result of the specimen test, the tensile strength of the 0° and 90° specimens was recovered by 10% and 90% after repair. Based on the test results, the repair performance of the developed composite maintenance robot was verified.

Effect of Aging Treatment on the Mechanical Properties of Mg-6Al-xZn(x=0,1,2) Alloys Fabr~catedb y Squeeze Casting (용탕단조법에 의해 제조된 Mg-6AI-xZn(x0,1,2)합금의 기계적 성질에 미치는 시효처리의 영향)

  • Gang, Min-Cheol;Yun, Il-Seong;Kim, Gyeong-Hyeon;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.129-135
    • /
    • 1997
  • This study has investigated the effects of aging treatment on thc nlechanical propcrries of blg-iiAl-x%nix - 0.1.2) alloys fabricated by the squeeze castmg process. The microstructurcs of as-squeeze cast were composed of pro eurectic $\alpha$ magnesium solid solution, super saturated $\alpha$ solid solution and $\beta(Mg_{17}AI_{12}$) compund. Agcd at both $200^{\circ}C$ and $240^{\circ}C$, Mg--6AixZn alloys showed the peak hardness due to the formation of $\beta(Mg_{17}AI_{12}$) precipitates. The tiiscontinuous precipitates of the lamella r\.pe are predominant at $200^{\circ}C$ aging tredrment. tvhilc. the finely dispersed continu ous precipitates were major type at $240^{\circ}C$ treatment. Mg-- GAI-xZn a1loi.s fabricated hy the squeeze casting process had the hetter combination of tensile strength and elongation compared to the conventionally cast alloys. As increascci zinc: contents. the tensile strength was increased 11y the soiid solutirin strengthening effect of zinc,.

  • PDF