• Title/Summary/Keyword: 불연속 균열 모델

Search Result 24, Processing Time 0.019 seconds

Hydraulic Analysis of a Discontinuous Rock Mass Using Smeared Fracture Model and DFN Model (DFN 모델과 스미어드 균열 모델을 이용한 불연속 암반의 3차원 수리해석)

  • Park, Jungchan;Kim, Jin-Seop;Lee, Changsoo;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.318-331
    • /
    • 2019
  • A three-dimensional(3D) equivalent continuum modeling was performed to analyze hydraulic behavior of rock mass considering discontinuities by using DFN model and smeared fracture model. DFN model was generated by FLAC3D and smeared fracture model was applied by using FISH functions, which is built-in functions in FLAC3D, for equivalent continuum model of fractured rock mass. Comparative analysis with 3DEC, which is for discontinuum analysis, was conducted to verify reliability of equivalent continuum analysis by using FLAC3D. Similar results of hydraulic analysis under the same conditions could be achieved. Equivalent continuum analysis of fractured rock mass by using DFN model was implemented to compare with existing analytical methods for inflow into the tunnel.

A Study on the Groundwater Flow and Solute Transport in Discontinuous Rock Mass Using Fracture Network Analysis : An Estimation of Equivalent Permeability on Discontinuous Rock Mass (균열망 해석법을 이용한 불연속 암반의 지하수 유동 및 용질이동 연구 : 불연속 암반의 등가 투수계수 추정)

  • Ju, Kwang-Su
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.129-137
    • /
    • 2000
  • This paper presents groundwater flow characteristics in discontinuous rock mass using fracture network program(NAPSAC) by statistical approach. Equivalent permeability coefficients are estimated from borehole data around Mabuk test tunnel site and fracture map on the arch of the tunnel. The reliability of fracture network model is obtained from determination of input data for statistical fracture network analysis from the real data(data of fracture network, data of hydraulic tests). The variation of permeability and mean anisotropic permeability coefficients are calculated from the realized model by increasing the size. As a result of analysis, a strong anisotropy of permeability is observed according to the direction of the fracture sets around the test tunnel.

  • PDF

A Study on the Groundwater Flow and Solute Transport in Discontinuous Rock Mass Using Fracture Network Analysis: An Estimation of Equivalent Permeability on Discontinuous Rock Mass (균열망 해석법을 이용한 불연속 암반의 지하수 유동 및 용질이동 연구: 불연속 암반의 등가 투수계수 추정)

  • 주광수
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.378-386
    • /
    • 2000
  • This paper presents groundwater flow characteristics in discontinuous rock mass using fracture network program(NAPSAC) by statistical approach. Equivalent permeability coefficients are estimated from borehole data around Mabuk test tunnel site and fracture map on the arch of the tunnel. The reliability of fracture network model is obtained from determination of input data for statistical fracture network analysis from the real data(data of fracture network, data of hydraulic tests). The variation of permeability and mean anisotropic permeability coefficients are calculated from the realized model by increasing the size. As a result of analysis, a strong anisotropy of permeability is observed according to the direction of the fracture sets around the test tunnel.

  • PDF

Analytical Study on Inelastic Behavior and Ductility Capacity of Reinforced Concerte Bridge Columns Subjected to Seismic Load (지진하중을 받는 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구)

  • 김태훈;유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.37-51
    • /
    • 2000
  • 이 연구는 지진 시 철근콘크리트 교각의 비탄성 거동 및 연성능력을 해석적으로 파악하는데 그 목적이 있다. 재료적 비선형성에 대해서는 균열 콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근 모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열 모델로서의 분산균열모델을 사용하였다. 두께가 서로 다른 부재간의 접합부에 단면강성이 급변하기 때문에 생기는 국소적인 불연속변형을 고려하기 위한 경계면 요소를 도입하였다. 또한, 축방향철근의 유무 및 그 양 등에 따른 구속효과를 적절히 표현할 수 있는 해석 모델을 개발하였다. 본 연구에서는 철근콘크리트 교각의 비탄성 거동 및 연성 능력의 파악을 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

  • PDF

Inelastic Analysis of Reinforced Concrete Structure Subjected to Cyclic Loads with Confining Effects of Lateral Tie (횡방향 철근의 구속효과를 고려한 반복하중을 받는 철근콘크리트 부재의 비탄성해석)

  • 유영화;최정호;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.79-93
    • /
    • 1998
  • The eigenvalue problem is presented for the building with added viscoelastic dampers by using component mode method. The Lagrange multiplier formulation is used to derive the eigenvalue problem which is expressed with the natural frequencies of the building, the mode components at which the dampers are added, and the viscoelastic property of the damper. The derived eigenvalue problem has a nonstandard form for determining the eigenvalues. Therefore, the problem is examined by the graphical depiction to give new insight into the eigenvalues for the building with added viscoelastic dampers. Using the present approach the exact eigenvalues can be found and also upper and lower bounds of the eigenvalues can be obtained.

  • PDF

Evaluation of the Shear Strength Component by Circular Transverse Reinforcement in Reinforced Concrete Columns (철근콘크리트 기둥에서 원형전단철근에 의한 전단강도 산정)

  • 하태훈;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.982-988
    • /
    • 2002
  • Current design equations for shear strength of reinforced concrete columns generally overestimate the shear strength contribution by the circular transverse reinforcement. This is due to the simplification of the discrete distribution of the reinforcement to the continuous one and the imprudent application of the classical truss model to the circular section, which is different in shear-resisting mechanism from the rectangular section. This study presents a rational model for the prediction of shear strength contribution by the circular transverse reinforcement considering the starting location of a diagonal crack, the number of transverse reinforcing bars crossing the main crack and the geometrical strength component of the transverse resistance. It was found that, for lower amount transverse reinforcement, the crack starting point and the number of crack crossing bars greatly influence the shear-resisting capacity. Proposed model leads to a reliable design equation which is derived using a linear regression method and is in good agreement with the lower bound of exact strength curve.

Research Trend of DFN Modeling Methodology: Representation of Spatial Distribution Characteristics of Fracture Networks (DFN 모델링 연구 동향 소개: 균열망의 공간적 분포 특성 모사를 중심으로)

  • Jineon, Kim;Jiwon, Cho;iIl-Seok, Kang;Jae-Joon, Song
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.464-477
    • /
    • 2022
  • DFN (discrete fracture network) models that take account of spatial variability and correlation between rock fractures have been demanded for analysis of fractured rock mass behavior for wide areas with high reliability, such as that of underground nuclear waste repositories. In this regard, this report describes the spatial distribution characteristics of fracture networks, and the DFN modeling methodologies that aim to represent such characteristics. DFN modeling methods have been proposed to represent the spatial variability of rock fractures by defining fracture domains (Darcel et al., 2013) and the spatial correlation among fractures by genetic modeling techniques that imitate fracture growth processes (Davy et al., 2013, Libby et al., 2019, Lavoine et al., 2020).These methods, however, require further research for their application to field surveys and for modeling in-situ rock fracture networks.

Analytical Study on the fatigue Behavior of Reinforced Concrete Bridge Piers under Earthquake (지진시 철근콘크리트 교각의 피로거동에 관한 해석적 연구)

  • 김태훈;이상철;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.389-396
    • /
    • 2001
  • This paper presents an analytical prediction of the fatigue behavior of reinforced concrete bridge piers under earthquake. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for fatigue behavior of reinforced concrete bridge piers under earthquake will be verified by comparison with reliable experimental results.

Behaviors of Concrete Segmented Composites Using Polymer Mortar Under Static and Impact Loadings (폴리머 모르타르를 이용한 콘크리트 분절 복합체의 정하중 및 충격하중에서의 거동 평가)

  • Min, Kyung Hwan;Lee, Jin Young;Kim, Mi Hye;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.169-177
    • /
    • 2011
  • In this study, an impact resistance of concrete segmented composites adopted shell's structures which have the excellent impact resistance was assessed. In order to enhance the performances of concrete segmented composite, the bond strength of mortar between the concrete blocks should be improved. Hence, in this study polymer mortars were applied to increase the bond strength of mortar. From the results of bond tests, the 15% latex mortar was selected and static and low-velocity impact tests were carried out for the specimens applied the plain and latex mortar. The concrete segmented composites, of which the bond strength of mortar was enhanced, showed improved low-velocity impact resistances. A Nonlinear finite element analysis using the discrete crack model showed similar energy dissipating capacities to the impact test's results. Consequently, by improving the analysis models for segmented composites, the impact resistances for manifold variables can be predicted and assessed.

Progressive Fracture Analyses of Concrete by Finite Element Methods (유한요소법에 의한 콘크리트의 진행성 파괴해석)

  • 송하원
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.1
    • /
    • pp.145-153
    • /
    • 1996
  • The fracture process zone in concrete is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important roles. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominani: mechanism governing the fracture process of concrete. Fracture mechanics does work for concrete provided that the fracture process zone is being considered, so that the development of model for the fracture process zone is most important to describe fracture phenomena in concrete. In this paper the bridging zone, which is a part of extended rnacrocrack with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the analysis of progressive cracking in concrete based on the discrete crack approach: one with crack element, the other without crack element. The advantage of the technique with crack element is that it dees not need to update the mesh topology to follow the progressive cracking. Numerical results by the techniques are demonstrated.