• Title/Summary/Keyword: 불안정연소

Search Result 368, Processing Time 0.023 seconds

Effect of Particle Size Distribution on the Sensitivity of Combustion Instability for Solid Rocket Motors (입자 크기 분포도를 고려한 고체로켓 모터의 연소 불안정 민감도 예측)

  • Joo, Seongmin;Kim, Junseong;Moon, Heejang;Ohm, Wonsuk;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.37-45
    • /
    • 2015
  • Prediction of combustion instability within a solid-propellant rocket motor has been conducted with the classical acoustic analysis. The effect of particle size distribution on the instability has been analyzed by comparing the log-normal distribution to the fixed mono-sized particle followed by a survey of motor length scale effect between the baseline model and small scale model. Particle damping effect was more efficient for the small scale motor which has a relatively high unstable mode frequencies. It was also revealed that the prediction results by considering the particle size distribution show an overall attenuation of fluctuating pressure amplitude with respect to the mono-sized case.

Combustion Instability modeling - 1D approach (연소불안정 모델링 - 1D 접근법 기반)

  • Kim, Daesik;Yoon, Myunggon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.65-67
    • /
    • 2017
  • Various combustion modeling approaches have been developed and verified in a combustion system such as rockets, gas turbines, and so on. This study introduces basic theory and recent research activities on 1D network model where a system is divided into a series of acoustic element and mass/momemtum/energy conservations are applied in the component. Each component is connected to the neighboring ones with proper jump conditions. Flame transfer function and acoustic transfer function are determined and effects of the each function on the system instability is investigated.

  • PDF

다발 원통 튜브형 그레인의 연소 불안정 억제를 위한 실험적 연구

  • 성홍계;변종렬;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.70-71
    • /
    • 2002
  • 연소실의 세장비(aspect ratio)가 작으면서 추진제의 고 충전을 이용한 단시간 연소 모타는 유도탄의 사출 모타 용으로 사용될 수 있다. 사출 모타는 일반적으로 모타 무게에 대한 제약 조건이 까다롭지 않기 때문에 무게 경량화에 대한 부담은 줄어들지만, 모타의 부피가 커지면 유도탄 발사 장치의 부피가 커지기 때문에 공간적인 측면에서 가능한 작게 하는 것이 시스템 전체의 효율을 증대시킬 수 있다. 또한 사출 모타의 연소 시간이 짧기 때문에(1초 이내) 추진제의 웹 두께가 작으므로 연소실의 주어진 공간에서 추진제를 많이 채우기 위한 방법으로 원통 튜브형 그레인을 여러 개의 다발로 사용하는 방법이 효과적이다. 이러한 관점에서 사출 모타용으로 다발 원통 튜브형 그레인을 설계/제작/연소시험을 하였더니 작은 저주파(약 10Hz)의 연소 불안정 현상이 발생하였다. (그림1). 이러한 주파수 대역은 일반적으로 잘 알려진 연소 불안정 모드 (longitudinal, tangential, and radial mode)와는 다른 아주 특이한 현상이다. 이러한 현상의 주 원인은 연소실 내 압력의 비평형에 의한 현상이라 판단되어 다음과 같은 연구를 수행하였다. 1) 그레인 튜브간의 압력 평형을 원활하게 하기 위하여 그레인에 구멍(홀)을 뚫어서 연소 안정화에 미치는 영향에 대한 연구(그림2), 2) 그레인에 홀을 뚫지 않고 격자와 격자간의 공간을 이용하여 그레인 간에 발생된 저주파의 압력 진동을 산란/소멸 시키는 연소 안정화 연구(그림3).

  • PDF

Experimental Study on Combustion Instability Mechanism in a Lean Premixed Model Gas Turbine Combustor using OH Chemiluminescence Images (희박 예혼합 모형 가스터빈 연소기의 OH 자발광을 이용한 연소불안정성에 대한 실험적 연구)

  • Lee Jae Ho;Lee Jong Ho;Chang Young June;Jeon Chung Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.259-264
    • /
    • 2005
  • Measurements of heat release are very important for controling combustion instabilities, which are closely connected with combustion instabilities. $OH^{\ast}$ images were acquired through a ICCD in this study, which were in use as indicating index of the reacting region, global and local heat release rate in the lean premixed combustion. The objectives of this study are to see the effect of equivalence ratio on global heat release rate and local Rayleigh index distribution. The local Rayleigh index distribution was acquired by information from central section of flame. This information was from the line-of-sight images which were inverted by the Abel de-convolution. In each condition, the mean value of heat release increased exponentially with equivalence for a periodic time. Local Rayleigh index distribution cleary showed the region of amplifying or damping the combustion instability as the equivalence ratio increased. This could provide an insight on the region of combustion instability and the structure of flames on the equivalence ratio.

  • PDF

Introduction to Thermoacoustic Models for Combustion Instability Prediction Using Flame Transfer Function (화염 전달 함수를 이용한 열음향 연소 불안정 해석 모델 소개)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.98-106
    • /
    • 2011
  • This paper reviews the state-of-the-art thermoacoustic(TA) modeling techniques and research trend to predict major parameters determining combustion instabilities in lean premixed gas turbine combustors. Linear TA modeling results give us an information on eigenfrequencies and initial growth rate of the instabilities. For the prediction, linear relation equation between acoustic waves and heat release oscillations should be derived in the determined system. Key information for this analysis is to determine the heat release fluctuations in the combustor, which is typically obtained by using n-${\tau}$ function from flame transfer function measurements and/or predictions. Great advancement in the linear TA modeling has been made over a couple of decades, and some successful prediction results have been reported in actual gas turbine combustors. However nonlinear TA model developments which are required to analyze nonlinear system behaviors such as limit cycle saturation and transition phenomena are still limited in a very simple system. In order to fully understand combustion instabilities in a complicated real system, nonlinear flame dynamics and acoustic wave interaction with nonlinear system boundary conditions should be explained from the nonlinear TA model developments.

A study on combustion instability of solid rocket motor with cylinder-slot grain (실린더-슬롯형 그레인을 가진 고체로켓모터의 연소불안정 연구)

  • Lee, Dohyung;Kim, Hongjip
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.371-377
    • /
    • 2020
  • Combustion instability occurred in the combustion test of solid rocket motor with large aspect ration Length/Diameter (L/D) and cylinder-slot grain. As a result of spectral analysis of the pressure perturbation, it was confirmed that the central axis longitudinal frequency was dominant, so that the length of the cylinder part was increased to eliminate the coincidence with acoustic node. In addition, acoustic modal analysis and flow analysis were performed to analyze the cause of instability by unsteady flow structure in solid rocket motors. It was confirmed that the combustion instability is reduced by quantitative comparison of the amplitude and frequencies of the pressure inside the combustion chamber using the grain shape before and after the design change. Finally, a combustion test was performed to verify that the combustion instability was resolved as in the flow analysis.

Effect of Combustion Instability on Heat Transfer in a Subscale Thrust Chamber (연소불안정에 따른 축소형 연소기에서의 열전달 영향)

  • Ahn, Kyubok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3403-3409
    • /
    • 2014
  • Hot-firing tests were carried out using a mixing head with 19 swirl coaxial injectors and a combustion chamber with internal cooling channels. The propellants of liquid oxygen and kerosene(Jet A-1) were burned in a range of chamber pressures (59~82 bar) and mixture ratios (2.0~3.0). The temperature of water used as the cooling fluid was measured at the inlet and outlet of the cooling channels, and the heat flux was calculated. The aim of this study was to examine the effect of combustion instability on heat transfer in a subscale thrust chamber, and detect the temperature variation of cooling water. During several hot-firing tests, combustion instability was encountered which caused a 5~20% increase in heat flux. The peak heat flux took place in the initial stages of combustion instability.

Introduction of Numerical Simulation Techniques for High-Frequency Combustion Instabilities (고주파 연소불안정 예측을 위한 해석기술 개발 사례)

  • Kim, Seong-Ku;Joh, Miok;Han, Sanghoon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.68-77
    • /
    • 2017
  • High-frequency combustion instability results from a feedback coupling between the unsteady heat release rate and the acoustic waves formed resonantly in the combustion chamber. It can be modeled as thermoacoustic problems with various degrees of the assumptions and simplifications. This paper presents numerical analysis of self-excited combustion instabilities in a variable-length lean-premixed combustor and designs of passive control devices such as baffle and acoustic resonators in a framework of 3-D FEM Helmholtz solver. Nonlinear behaviors such as steep-fronted shock waves and a finite amplitude limit cycle are also investigated with a compressible flow simulation technique.

  • PDF

Study on the Stability Test of Impinging(FOOF) Injector on $GN_2$ Purge Cold Flow Test (질소분사 음향시험을 통한 충돌형(FOOF) 분사기의 안정성 평가에 관한 연구)

  • Yoo Doc-Koon;Lee Kwang-Jin;Seo Seong-Hyeon;Han Young-Min;Choi Hwan-Seok;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.135-140
    • /
    • 2006
  • In the experimental study of $N_2$ purge cold flow test of impinging(FOOF) injector for determining of instability region, the whistling sound which has a specific frequency is generated. The frequency of whistling is proportional to the gas flow velocity in part of the oxidizer orifice and due to the coupling of the vibrating gas column and the natural frequency of pipe-orifice shape, the discontinuous jumping phenomena arises. The whistling phenomena have no effect on the combustion instability. Compared the damping factor of 1T1L mode with the hot fire test, the instability region of $N_2$ purge cold flow test is very much like that. It means that flow instability by impinging or mixing of jet is the main reason of combustion instability of impinging injector(FOOF) in the hot firing test.

  • PDF

Effects of Acoustic Boundary Conditions on Combustion Instabilities in a Gas Turbine Combustor (음향 경계 조건이 가스터빈 연소기에서의 연소불안정에 미치는 영향)

  • Lim, Jaeyoung;Kim, Deasik;Kim, Seong-Ku;Cha, Dong Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.15-23
    • /
    • 2015
  • This study predicts the basic characteristics of combustion instabilities in a gas turbine lean premixed combustor using ASCI3D code which is a FEM(Finite Element Method)-based Helmholtz solver. The prediction results show the good agreement with the measured data in modeling the overall combustion instability features, however, the code is found to overpredict the unstable conditions. As one of the efforts to improve the model accuracy, the effects of acoustic boundary conditions on the instability growth rate are analyzed. As a result, it is shown that the acoustic reflection coefficient has a great impact on the instability and the prediction accuracy can be enhanced by defining the precise acoustic conditions.