DOI QR코드

DOI QR Code

Effect of Combustion Instability on Heat Transfer in a Subscale Thrust Chamber

연소불안정에 따른 축소형 연소기에서의 열전달 영향

  • Ahn, Kyubok (School of Mechanical Engineering, Chungbuk National University)
  • 안규복 (충북대학교 기계공학부)
  • Received : 2014.02.14
  • Accepted : 2014.06.12
  • Published : 2014.06.30

Abstract

Hot-firing tests were carried out using a mixing head with 19 swirl coaxial injectors and a combustion chamber with internal cooling channels. The propellants of liquid oxygen and kerosene(Jet A-1) were burned in a range of chamber pressures (59~82 bar) and mixture ratios (2.0~3.0). The temperature of water used as the cooling fluid was measured at the inlet and outlet of the cooling channels, and the heat flux was calculated. The aim of this study was to examine the effect of combustion instability on heat transfer in a subscale thrust chamber, and detect the temperature variation of cooling water. During several hot-firing tests, combustion instability was encountered which caused a 5~20% increase in heat flux. The peak heat flux took place in the initial stages of combustion instability.

동축 와류형 분사기 19개로 구성된 연소기 헤드와 냉각채널을 갖는 연소실을 이용하여 연소시험을 수행하였다. 추진제로는 액체산소와 케로신(Jet A-1)이 사용되었으며, 연소시험은 연소실 압력 59~82 bar, 혼합비 2.0~3.0 영역에서 수행되었다. 냉각채널 연소실의 냉각 유체로는 물이 사용되었으며, 냉각채널 입구와 출구에서의 물의 온도를 측정하여 열유속 값을 계산하였다. 본 연구에서는 연소불안정에 따른 열전달 영향을 살펴보는 것을 목표로 하였으며, 이를 위해 냉각수의 온도 변화를 계측하였다. 몇 번의 연소시험에서 연소불안정 현상이 발생하였으며, 이때 열유속이 5~20% 정도 증가하는 결과가 나타났다. 또한 열유속은 연소불안정이 발생하는 초기 시점에서 최대가 되는 것을 알 수 있었다.

Keywords

References

  1. D. K .Huzel, D. H. Huang, Modern Engineering for Design of Liquid-Propellant Rocket Engines, Vol. 147, Progress in Astronautics and Aeronautics, AIAA, Washington, D.C., 1992.
  2. V. Yang, Liquid Rocket Thrust Chamber: Aspects of Modeling, Analysis, and Design, Vol. 200, Progress in Astronautics and Aeronautics, AIAA, Washington, D.C., 2004.
  3. N. E. V. Huff, D. A. Fairchild, "Liquid Rocket Engine Fluid-Cooled Combustion Chambers," NASA SP-8087, 1972.
  4. M. Pizzarelli, F. Nasuti, M. Onofri, "Analysis of Curved-Cooling-Channel Flow and Heat Transfer in Rocket Engines," Journal of Propulsion and Power, Vol. 27, No. 5, pp. 1045-1053, 2011. DOI: http://dx.doi.org/10.2514/1.B34163
  5. R. Arnold, D. I. Suslov, O. J. Haidn, "Film Cooling in a High-Pressure Subscale Combustion Chamber," Journal of Propulsion and Power, Vol. 26, No. 3, pp. 428-438, 2010. DOI: http://dx.doi.org/10.2514/1.47148
  6. K. Ahn, J. G. Kim, B. Lim, M. Kim, D. Kang, S. K. Kim, H. S. Choi, "Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 6, pp. 56-61, 2012. DOI: http://dx.doi.org/10.6108/KSPE.2012.16.6.056
  7. K. Ahn, J. G. Kim, M. Joh, S. K. Kim, C. Ryu, H. S. Choi, "Design, Analysis, and Manufacture of 7 tonf-class Regeneratively-Cooled Combustion Chamber," Proceedings of the 2013 KSPE Spring Conference, pp. 666-669, 2013.
  8. J. C. Oefelein, V. Yang, "Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engines," Journal of Propulsion and Power, Vol. 9, No. 5, pp. 657-677, 1993. DOI: http://dx.doi.org/10.2514/3.23674
  9. M. L. Dranovsky, Combustion Instabilities in Liquid Rocket Engines: Testing and Development Practices in Russia, Vol. 221, Progress in Astronautics and Aeronautics, AIAA, Reston, Virginia, 2007.
  10. K. Ahn, Y. M. Han, S. Seo, H. S. Choi, "Effects of Injector Recess and Chamber Pressure on Combustion Characteristics of Liquid-Liquid Swirl Coaxial Injectors," Combustion Science and Technology, Vol. 183, pp. 252-270, 2011. DOI: http://dx.doi.org/10.1080/00102202.2010.516289
  11. K. Ahn, S. Seo, H. S. Choi, "Fuel-Rich Combustion Characteristics of Biswirl Coaxial Injectors," Journal of Propulsion and Power, Vol. 27, No. 4, pp. 864-872, 2011. DOI: http://dx.doi.org/10.2514/1.B34121
  12. K. Ahn, H. S. Choi, "Combustion Dynamics of Swirl Coaxial Injectors in Fuel-Rich Combustion," Journal of Propulsion and Power, Vol. 28, No. 6, pp. 1359-1367, 2012. DOI: http://dx.doi.org/10.2514/1.B34448
  13. D. T. Harrje, F. H. Reardon, "Liquid Propellant Rocket Combustion Instability," NASA SP-194, 1972.
  14. L. P. Combs, C. L. Oberg, T. A. Coultas, W. H. Evers, "Liquid Rocket Engine Combustion Stabilization Devices," NASA SP-8113, 1974.
  15. V. Yang, W. E. Anderson, Liquid Rocket Engine Combustion Instability, Vol. 169, Progress in Astronautics and Aeronautics, AIAA, Washington, D.C., 1995.
  16. M. Joh, S. K. Kim, H. S. Choi, "Combustion/Cooling Performance Analysis of a Liquid Rocket Thrust Chamber with High Expansion Ratio," Proceedings of the 2012 KSPE Fall Conference, pp. 93-98, 2012.