• Title/Summary/Keyword: 불소제거

Search Result 93, Processing Time 0.019 seconds

Comparison of Nitrate and Fluoride Removals between Reverse-Osmosis, Nano-Flitration, Electro-Adsorption, Elecero-Coagulation in Small Water Treatment Plants (소규모 수도시설의 역삼투(RO), 나노여과(NF), 전기흡착(EA), 전기응집(EC) 공정의 질산성 질소 및 불소 이온 제거 성능 비교)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2027-2036
    • /
    • 2013
  • Comparison of removal performance between reverse osmosis(RO), nanofiltration(NF), electrocoagulation(EC) and electroadsorption(EA) for removal of nitrate and fluoride often exceeded the limits of water quality in small water treatment plants. Removals of nitrate and fluoride were 72-92% and 74-85% in RO, 5-15% and 1% in NF, 99% and 44% in EA equipped with MWCNT coated electrodes, 82% and 77% in EA equipped with Cu-MWCNT electrodes, and 11-46% and 69-99% in EC. Consequently, high removals of both ions were anticipated in RO. Effective removal of both ions are possible for EC, but great production of sludge is a big burden. EA equipped with the MWCNT electrodes showed a great fluctuation in removal efficiency, and electrode stability should be upgraded.

Treatment Features of Fluorine-containing Wastewater Using Calcium as a Precipitant for Its Reuse (처리수(處理水) 재사용(再使用)을 위한 칼슘 침전법(沈澱法)에 의한 불소폐수(弗素廢水) 처리(處理) 특성(特性))

  • Kim, Young-Im;Baek, Mi-Hwa;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.27-32
    • /
    • 2007
  • The characteristics of fluorine removal from wastewater have been investigated by precipitation method using calcium as a precipitant for the purpose of the reuse of treated wastewater. In the conditions of 10 mM of the initial concentration of fluorine and pH 4, the precipitation of fluorine was rapidly progressed within a few minutes after the precipitant was added and the precipitation of fluorine was observed to follow a second order reaction. Also, as the addition of precipitant was increased, the reaction rate constant of fluorine precipitation was found to rise. Postulating that the maximum fluorine removal was attained at pH 4, about 70% of fluorine was precipitated compared with the maximum removal when 10 times of equivalent amount of calcium was employed at pH 2 and the fluorine removal was about 96% compared with its maximum value at pH 3 under the same addition of precipitant. The fluorine precipitation reaction was found to be endothermic and the coexistence of $SiF_6{^{2-}}$ with fluorine resulted in its less removal. Finally, the isoelectric point of the precipitate was examined to be ca. pH 5.

다양한 흡착제에 의한 지하수 중의 불소제거 특성

  • Park, Hyeon-Ju;Jeong, Jin-Hwa;Song, Myeong-Gi;Na, Chun-Gi
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.423-427
    • /
    • 2008
  • 지하수 중에 함유된 불소이온을 제거하기 위한 흡착제로 상용의 음이온교환수지(PA), 란탄산화물(La) 및 수산화아파타이트(HAp)를 선정하고 각각의 흡착특성을 회분식 실험을 통해 검토하였다. 그 결과를 요약하면 다음과 같다. 1) PA, La 및 HAp의 불소흡착은 Fruendlich isodtherm model 및 Pseudo-second-order kinetics model과 일치하는 거동을 보였다. 2) D-R model로부터 구한 흡착에너지는 9.66$\sim$12.90 kJ/mol로 이온교환메커니즘을 나타내는 흡착에너지 6$\sim$16 kJ/mol의 범위에 속하였다. 3) Van't Hoff 식에 이용하여 구한 ${\Delta}H^{\circ}$${\Delta}G^{\circ}$값은 각각 3.40$\sim$89.28 kJ/mol과 -12.26$\sim$-13.76 kJ/mol의 범위를 보여 모두 흡착과정이 발열반응이며 자발적으로 일어나는 조건임을 알 수 있었다. 4) PA는 pH 6$\sim$8인 중성영역에서 가장 높은 불소 제거율을 보였으며, La과 HAp는 산성영역으로 갈수록 불소 제거율이 증가하는 특성을 나타내었다. 5) 불소에 대한 흡착선택성은 La$\geq$HAp>PA 순으로 높았으며, La의 경우 불소를 제외한 모든 음이온에 대한 흡착능이 없을 정도로 불소에 대한 흡착 특이성을 보였다.

  • PDF

Treatment of Fluoride in Semiconductor Wastewater by using Fluidized Bed Reactor (유동상 반응기를 이용한 반도체 폐수의 불소 처리)

  • An, Myeong-Ki;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.437-442
    • /
    • 2010
  • This work was initiated both to maximize purity of calcium fluoride sludge and to minimize water content in the settled sludge. The sludge was produced in the process of fluoride removal of semiconductor wastewater by the addition of $Ca^{2+}$ ion. Fludized bed reactor(FBR) using calcium fluoride as a seed was adapted. Optimum pH and molar ratio of $Ca^{2+}/F^-$ were determined in lab-scale study. The experimental results showed that fluoride removal was increased as pH and molar ratio of $Ca^{2+}/F^-$ increased, with the best removal of 79.8% in an optimum condition. In the optimum point of fluoride removal, very low ${PO_4}^{3-}$-P removal of 9.3% was observed. It indicates forming $CaF_2$ crystal of high purity, when side reaction of calcium with phosphate was minimized. In addition, water content of settled sludge was 19.3%, which is relatively low compared to other fluoride removal processes. Consequently, the FBR process proposed in this study was very effective in fluoride removal, producing good sludge of high purity and less water content.

Fluoride Removal from Aqueous Solution Using Thermally Treated Pyrophyllite as Adsorbent (고온 처리된 납석을 흡착제로 이용한 용액상의 불소 제거)

  • Kim, Jae-Hyun;Song, Yang-Min;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.131-136
    • /
    • 2013
  • The aim of this study was to investigate the removal of fluoride using thermally treated pyrophyllite as adsorbent. Sorption experiments were conducted under batch conditions to examine the effects of adsorbent dose, reaction time, initial fluoride concentration and solution pH on fluoride removal. In the experiments, the pyrophyllite thermally treated at different temperatures [untreated (P-U), $400^{\circ}C$ (P-400), $600^{\circ}C$ (P-600)] were used. Results showed that the adsorption capacity was in the order of P-400 > P-U > P-600. The XRD analysis indicated that both P-U and P-400 were composed of quartz, dickite and pyrophyllite while P-600 was quartz. The BET analysis showed that the specific surface area was in the order of P-600 > P-400 > P-U. Kinetic data showed that fluoride sorption to P-400 arrived at equilibrium around 24 h. Equilibrium test demonstrated that the maximum sorption capacity of P-400 was 0.957 mg/g. In addition, fluoride removal by P-400 was not sensitive to solution pH between 4 and 10. However, fluoride removal decreased considerably at highly acidic (pH < 4) and alkaline (pH > 10) conditions. This study demonstrates that pyrophyllite could be used as a low-cost adsorbent for fluoride removal from aqueous solution.

A Study on the Removal of Low-concentration Fluoride-ion by Modified Alumina (변형 알루미나를 이용한 저농도 불소이온 제거 연구)

  • Kim, So-Young;Kim, Ju-Hee;Kim, Hyoun-Ja;Cho, Young-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • The typical treatment method for fluoride polluted water is the flocculation and precipitation method which usually is capable of reducing the fluoride concentration down to the level of about 10 ppm. However, this method is no longer effective for the treatment of contaminated water having less than 10 ppm of fluorides. To remove fluorides in polluted water from the fluoride concentration between 1 to 10 ppm, several adsorbents were prepared mainly based on an activated alumina and the fluoride removal efficiencies of the adsorbents were analyzed. The best fluoride removal efficiency was obtained when the activated alumina treated by sulfuric acid was used as the adsorbent. A proper calcination temperature for the sulfuric acid contained activated alumina was found to be about $500^{\circ}C$. An adsorption isotherm for the adsorbent was also obtained by using Freundlich model. The values of the constants in Freundlich isotherm model were calculated to be K=6.63 and 1/n=0.29 based on the results obtained from the series of batch type adsorption experiments.

Inhibition Effects of $Ca^{2+}$ and $F^-$ Ion on Struvite Crystallization ($Ca^{2+}$$F^-$ 이온이 Struvite 결정화 반응에 미치는 영향)

  • Kim, Seung-Ha;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.730-737
    • /
    • 2010
  • It is very important to remove fluoride ion before treating semiconductor wastewater containing high concentration of ammonia, phosphates, and fluoride ions by struvite formation. Calcium ion was generally added for the removal of fluoride ion. However, calcium ions remained after removal of fluoride ion can deteriorate the performance of struvite crystalization. It should be removed completely before struvite formation. In this study, the effect of fluoride and calcium ion concentration on the struvite crystalization was investigated. Removal efficiencies of ortho-phosphate with struvite formation were more abruptly decreased than those of ammonium nitrogen, as increase of fluoride ion concentration in synthetic wastewater. The structures of struvite formed in synthetic wastewater containing calcium ion of up to 500 mg/L were identical. Purity of struvite was deteriorated as increase of calcium ion over 500 mg/L. Removal efficiencies of ammonium nitrogen were more decreased than those of phosphate ions as increase of cacium ion in synthetic wastewater.

Removal Characteristics of Fluoride Ions by PSf-Al(OH)3 Beads Immobilized Al(OH)3 with Polysulfone (Polysulfone으로 Al(OH)3를 고정화한 PSf-Al(OH)3 비드에 의한 불소 이온의 제거 특성)

  • Jeon, Jin-Woo;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • In this study, PSf-$Al(OH)_3$ beads were prepared by immobilizating aluminum hydroxide $Al(OH)_3$ with polysulfone (PSf). The removal experiments of the fluoride ions by PSf-$Al(OH)_3$ beads were conducted batchwise and the parameters such as pH, initial fluoride concentration, and coexisting ions were investigated. The maximum removal capacity obtained from Langmuir isotherm was 52.4 mg/g and the optimum pH region of fluoride ions was in the range of 4 to 10. The removal process of fluoride ions by PSf-$Al(OH)_3$ beads was found to be controlled by both external mass transfer at the earlier stage followed by internal diffusion at the later stage. The presence of coexisting anions such as $HCO_3{^-}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $Cl^-$ had a negative effect on removal of fluoride ions by PSf-$Al(OH)_3$ beads.

Operation Parameters for the Effective Treatment of Steel Wastewater by Rare Earth Oxide and Calcium Hydroxide (효율적 제철폐수의 처리를 위한 희토류 화합물과 칼슘화합물의 운전인자 연구)

  • Lee, Chang-Yong;Lee, Sang-Min;Kim, Wan-Joo;Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.483-489
    • /
    • 2006
  • The behavior of rare earth compounds such as $La_{2}O_{3}$, $CeO_{2}$, and $Ca(OH)_{2}$ on the removal of fluoride and heavy metals in the steel wastewater has been investigated. The removal mechanism of fluoride by rare earth elements has been known to be the formation of insoluble compounds between $F^{-}$ and cations such as $La^{3+}$ and $Ce^{4+}$ produced by the dissociation of rare earth compounds (To reduce the running cost of the fluoride wastewater treatment facility, their fluoride removal efficiencies were compared with those of inexpensive rare earth minerals such as natural lanthanide and cerium compound used as a glass polishing agent). All of the rare earth oxides used in this study showed a higher removal efficiency of fluoride than $Ca(OH)_{2}$ in the wastewater. In the case of artificial HF solution, the removal efficiency of fluoride showed in the order: $CeO_{2}$-mineral < $CeO_{2}$ < $Ca(OH)_{2}$ < $La_{2}O_{3}$-mineral < $La_{2}O_{3}$. However, the removal efficiency of fluoride in the wastewater increased in the following order: $Ca(OH)_{2}$ < $CeO_{2}$ mineral < $CeO_{2}$ < $La_{2}O_{3}$ mineral < $La_{2}O_{3}$. All agents showed high efficiencies for the removal of Mn and total Cr in the rare earth compounds. In the case of $Ca(OH)_{2}$, fluoride removal decreased with increasing pH while. However, the rare earth compounds showed a higher fluoride removal in higher pH condition, the optimum pH condition seemed to be around 7 considering both water quality and fluoride removal. Under the pH 7 condition, the $Ca(OH)_{2}$ was superior to rare earth compounds in Mn removal and the lanthanide was superior to others in total Cr removal.

Effects of $CaF_2$ dosage, pH and Treated Water Recirculation on Fluoride Removal in Treating Semiconductor Wastewater with Fluidized bed Reactor (FBR) (유동상 반응기를 이용한 반도체 폐수 내 불소 처리 시 $CaF_2$ 주입량, pH 및 처리수 재순환의 영향)

  • An, Myeong-Ki;Kim, Jin-Sik;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.593-598
    • /
    • 2010
  • The optimum condition for fluoride removal, water content reduction, and $CaF_2$ purity was determined in treating semiconductor waste water in which ammonia nitrogen, phosphorus, and fluoride are existed simultaneously using a fluidized bed reactor. Effects of pH, seed dosage, and recirculation of treated water were investigated through lab-scale experiments. Considering fluoride removal, sludge purity, and water content, that pH 5 and seed dose of 150 g were found to be optimum. Correspondingly, removal of fluoride and phosphate (${PO_4}^{3-}$-P) was 94.24% and 8.97%, respectively, with water content ratio of 12.94%. Increase in an amount of seed dosage not only enhance fluoride removal efficiency, but also buffer fluoride removal-reducing effect due to the variation of recirculation ratio of treated water and pH.