• Title/Summary/Keyword: 불균형

검색결과 2,208건 처리시간 0.034초

이분형 자료의 분류문제에서 불균형을 다루기 위한 표본재추출 방법 비교 (Comparison of resampling methods for dealing with imbalanced data in binary classification problem)

  • 박근우;정인경
    • 응용통계연구
    • /
    • 제32권3호
    • /
    • pp.349-374
    • /
    • 2019
  • 이분형 자료의 분류에서 자료의 불균형 정도가 심한 경우 분류 결과가 좋지 않을 수 있다. 이런 문제 해결을 위해 학습 자료를 변형시키는 등의 연구가 활발히 진행되고 있다. 본 연구에서는 이러한 이분형 자료의 분류문제에서 불균형을 다루기 위한 방법들 중 표본재추출 방법들을 비교하였다. 이를 통해 자료에서 희소계급의 탐지를 보다 효과적으로 하는 방법을 찾고자 하였다. 모의실험을 통하여 여러 오버샘플링, 언더샘플링, 오버샘플링과 언더샘플링 혼합방법의 총 20가지를 비교하였다. 분류문제에서 대표적으로 쓰이는 로지스틱 회귀분석, support vector machine, 랜덤포레스트 모형을 분류기로 사용하였다. 모의실험 결과, 정확도가 0.5 이상이면서 민감도가 높았던 표본재추출 방법은 random under sampling (RUS)였다. 그 다음으로 민감도가 높았던 방법은 오버샘플링 ADASYN (adaptive synthetic sampling approach)이었다. 이를 통해 RUS 방법이 희소계급값을 찾기 위한 방안으로는 적합했다는 것을 알 수 있었다. 몇 가지 실제 자료에 적용한 결과도 모의실험의 결과와 비슷한 양상을 보였다.

불균형 데이터 처리를 통한 소프트웨어 요구사항 분류 모델의 성능 개선에 관한 연구 (A Study on Improving Performance of Software Requirements Classification Models by Handling Imbalanced Data)

  • 최종우;이영준;임채균;최호진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권7호
    • /
    • pp.295-302
    • /
    • 2023
  • 자연어로 작성되는 소프트웨어 요구사항은 이해관계자가 바라보는 관점에 따라 의미가 달라질 수 있다. 품질 속성 기반으로 아키텍처 설계시에 품질 속성별로 적합한 설계 전술(Tactic)을 선택해야 효율적인 설계가 가능해 품질 속성 요구사항의 정확한 분류가 필요하다. 이에 따라 고비용 작업인 요구사항 분류에 관한 자연어처리 모델이 많이 연구되고 있지만, 품질 속성 데이터셋(dataset)의 불균형을 처리해 분류 성능을 개선하는 주제는 많이 다루고 있지 않다. 본 연구에서는 먼저 실험을 통해 분류 모델이 한국어 요구사항 데이터셋을 자동으로 분류할 수 있음을 보인다. 이 결과를 바탕으로 EDA(Easy Data Augmentation) 기법을 통한 데이터 증강과 언더샘플링(undersampling) 전략으로 품질 속성 데이터셋의 불균형을 개선할 수 있음을 설명하고 요구사항의 카테고리 분류에 효과가 있음을 보인다. 실험 결과 F1 점수(F1-Score) 기준으로 최대 5.24%p 향상되어 불균형 데이터 처리 기법이 분류 모델의 한국어 요구사항 분류에 도움이 됨을 확인할 수 있다. 또한, EDA의 세부 실험을 통해 분류 성능 개선에 도움이 되는 데이터 증강 연산에 관해 설명한다.

불균형 데이터 처리를 통한 머신러닝 기반 TBM 굴진율 이상탐지 개선 (Enhancing machine learning-based anomaly detection for TBM penetration rate with imbalanced data manipulation)

  • 권기범;황병현;박현태;오주영;최항석
    • 한국터널지하공간학회 논문집
    • /
    • 제26권5호
    • /
    • pp.519-532
    • /
    • 2024
  • TBM (tunnel boring machine) 터널 프로젝트의 리스크 관리 측면에서 굴진율 예측은 중요하며, 이를 위한 머신러닝 기반 TBM 굴진율 예측 연구가 지속적으로 진행되어 왔다. 그러나, 기존 연구의 머신러닝 예측 모델은 정상 굴진율과 이상 굴진율 간의 불균형 데이터를 고려하는 데 한계가 있다. 본 연구에서는 데이터 증강 기법을 통해 불균형 데이터를 처리하여 머신러닝 기반 TBM 굴진율 이상탐지 성능을 개선하였다. 먼저, 상관관계 분석을 통해 유사 변수를 제거하여 6가지 입력특성을 선정하였다. 또한, 하위 10%와 상위 10%의 굴진율을 각각 이상 등급으로, 그 외 범위의 굴진율을 정상 등급으로 굴진율 등급을 구분하였다. 기존 학습 데이터와 SMOTE (synthetic minority oversampling technique)를 통해 증강된 학습 데이터를 각각 XGB (extreme gradient boosting)에 적용한 XGB 모델과 XGB-SMOTE 모델을 구축하였다. 굴진율 등급 예측 성능을 비교한 결과, XGB 모델은 정상 굴진율에 대한 예측 성능은 우수하나 이상 굴진율 예측 성능은 상대적으로 낮게 도출되었다. 반면, XGB-SMOTE 모델은 모든 굴진율 등급에서 일관되게 우수한 예측 성능을 보였다. 이는 SMOTE를 통한 이상 굴진율 데이터의 증강이 이상 굴진율을 유발하는 지반조건과 TBM 운영인자 간의 패턴 학습 수준을 향상시켰기 때문으로 판단된다. 결론적으로, 본 연구는 머신러닝 기반 TBM 굴진율 이상탐지 시 데이터 증강 기법을 활용한 불균형 데이터 처리가 효과적임을 보여준다.

불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측 (Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution)

  • 김은미;홍태호
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.29-45
    • /
    • 2015
  • 고객반응 예측모형은 마케팅 프로모션을 제공할 목표고객을 효과적으로 선정할 수 있도록 하여 프로모션의 효과를 극대화 할 수 있도록 해준다. 오늘날과 같은 빅데이터 환경에서는 데이터 마이닝 기법을 적용하여 고객반응 예측모형을 구축하고 있으며 본 연구에서는 사례기반추론 기반의 고객반응 예측모형을 제시하였다. 일반적으로 사례기반추론 기반의 예측모형은 타 인공지능기법에 비해 성과가 낮다고 알려져 있으나 입력변수의 중요도에 따라 가중치를 상이하게 적용함으로써 예측성과를 향상시킬 수 있다. 본 연구에서는 프로모션에 대한 고객의 반응여부에 영향을 미치는 중요도에 따라 입력변수의 가중치를 산출하여 적용하였으며 동일한 가중치를 적용한 예측모형과의 성과를 비교하였다. 목욕세제 판매데이터를 사용하여 고객반응 예측모형을 개발하고 로짓모형의 계수를 적용하여 입력변수의 중요도에 따라 가중치를 산출하였다. 실증분석 결과 각 변수의 중요도에 기반하여 가중치를 적용한 예측모형이 동일한 가중치를 적용한 예측모형보다 높은 예측성과를 보여주었다. 또한 고객 반응예측 모형과 같이 실생활의 분류문제에서는 두 범주에 속하는 데이터의 수가 현격한 차이를 보이는 불균형 데이터가 대부분이다. 이러한 데이터의 불균형 문제는 기계학습 알고리즘의 성능을 저하시키는 요인으로 작용하며 본 연구에서 제안한 Weighted CBR이 불균형 환경에서도 안정적으로 적용할 수 있는지 검증하였다. 전체데이터에서 100개의 데이터를 무작위로 추출한 불균형 환경에서 100번 반복하여 예측성과를 비교해 본 결과 본 연구에서 제안한 Weighted CBR은 불균형 환경에서도 일관된 우수한 성과를 보여주었다.