• Title/Summary/Keyword: 불감증설

Search Result 2, Processing Time 0.017 seconds

Relationships between Insensible Perspiration and Thermo Physiological Factors during Wearing Seasonal Clothing Ensembles in Comfort (쾌적한 상태에서 계절별 의복을 착용하고 있는 동안 불감증설과 온열 생리 요소들 간의 관련성)

  • Lee, Joo-Young;Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1700-1709
    • /
    • 2007
  • The purpose of this study was to examine the relationships between thermo-physiological factors and the insensible loss of body weight(IL) of resting women wearing seasonal comfortable clothing. Air temperature was maintained at a mean of 22.5, 24.7, and 16.8 for spring/fall, summer and winter, respectively. We selected a total of 26 clothing ensembles(8 ensembles for spring/fall, 7 ensembles for summer, and 11 ensembles for winter). The results showed that 1) IL was $19{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for spring/fall environment, $21{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for summer, $18{\pm}6{\cdot}m^{-2}{\cdot}hr$ for winter(p<.001). 2) Insensible water loss through respiratory passage(IWR) showed the reverse tendency to IL. IWR was $6{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for winter and $5{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for summer. This difference was significant(p<.001). 3) The proportion of IWR out of whole insensible water loss(IW), had a mean of the mean 28% for summer and 38% for winter(p<.001). 4) In comfort, the heat loss by IW out of heat production had a mean of 25% for spring/fall, 27% for summer, and 23% for winter. 5) There was a weak negative correlation between It and clothing insulation/body surface area covered by clothing. 6) There were significant correlations between IL and air temperature$(T_a)$, air humidity$(H_a)$, energy metabolism, ventilation, mean skin temperature $\={T}_{sk})$ and clothing microclimate humidity$(H_{clo})$. However, the coefficients were less than 0.5. In conclusion, there were weak relationships between the IL and thermo-physiological factors. However, when subjects rested in thermal comfort, the IL was maintained in a narrow range even though the clothing insulation and air temperature were diverse.

Distribution of Skin Hydration on the Hand while Wearing Latex Gloves and Inner Gloves (라텍스 장갑과 마이크로 파이버 속장갑 착용 시 손의 피부수분도 분포)

  • Roh, Sang-Hyun;Hyun, Cheol-Seung;Lee, Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.966-976
    • /
    • 2017
  • This study investigated the effects of wearing latex gloves with inner gloves on the skin hydration of the hands. Fifteen young males participated in the following three conditions: bare hand (BH), latex glove (LG), and latex glove with inner glove condition (LGIG) at an air temperature of $28^{\circ}C$ with 50%RH. Subjects typed a book for 120 min. The results were as follows. Skin hydration was greater for LG and LGIG than BH (p<.001), but no difference was found between LG and LGIG. Skin hydration showed greater values on the thenar and dorsum compared to the palm for both LG and LGIG (p<.05). Skin hydration on the thenar increased during the typing for LG and LGIG, but on the dorsum, palm and finger maintained after 40 min typing. There were positive relationships between hand skin hydration and hand temperature (p<.05). Subjects indicated 'much warmer' and 'more humid' for the LG and LGIG compared to the BH (p<.001), but no differences were found between LG and LGIG. In conclusion, wearing inner gloves inside latex gloves did not induce a reduction of skin hydration and hand temperature; however, significant differences were found in all measurements between bare hands and gloved hands.