• Title/Summary/Keyword: 분해상수

Search Result 395, Processing Time 0.027 seconds

Kinetics of Metolachlor Degradation by Zerovalent Iron (Zerovalent Iron에 의한 Metolachlor의 분해 Kinetics)

  • Kim, Su-Jung;Oh, Sang-Eun;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.55-61
    • /
    • 2007
  • Metolachlor may pose a threat to surface and ground water qualities due to its high solubility in water, Zerovalent iron (ZVI) releases $e^-$ which can degrade the organochlorinated compounds. The objective of this research was to evaluate the kinetics of metolachlor degradation as affected by ZVI sources [Peerless unannealed (PU) and Peerless annealed (PA)] and ZVI levels (1 and 5%) under batch conditions at different metolachlor concentrations (200 and 1000 mg/l) and temperatures (15, 25, and $35^{\circ}C$). The effectiveness of ZVI on metolachlor degradation was assessed by characterizing the dechlorinated metolachlor byproduct molecules. Metolachlor degradation by ZVI followed the first-ordered kinetics with a higher rate constant at higher level of ZVI treatment. At 5% (w/v) of PU and PA treatment, the half-lives of metolachlor degradation were 9.93 and 6.51 h and all of the initial metolachlor were degraded in 72 and 48 h, respectively. Rate constants (k) of metolachlor degradation were higher at the lower initial metolachlor concentration. The metolachlor degradation by ZVI was temperature dependent showing that the rate constant (k) at 15, 25, and $35^{\circ}C$ were 0.0805, 0.1017, and 0.3116 /h, respectively. The ZVI-mediated metolachlor degradation yielded two byproduct molecules identified as dechlorinated metolachlor $(C_{13}H_{18}NO)$ and dechlorinated-dealkylated metolachlor $(C_{12}H_{17}NO)$. The PA ZVI was more effective than PU ZVI in metolachlor degradation.

A Study on Pyrolysis of Silane and Disilane at Low Pressure (저압에서의 사알렌과 디사일렌의 열분해 반응에 관한 연구)

  • 한재현;문상흡
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.4
    • /
    • pp.350-357
    • /
    • 1995
  • SiH4와 Si2H6를 1-3 Torr 정도의 저압에서 열분해시켰을 때, 반응물의 농도 변화를 살펴보고 이로부터 열분해의 반응 기구를 예측하였다. 분석기로는 질량 분석기를 이용하였으며, 분해 온도 범위는 SiH4의 경우는 $350~475^{\circ}C$, Si2H6의 경우는 275-375$^{\circ}C$이었다. SiH4의 분해 양상은 1차 비가역 반응에 잘 들어 맞았으며, 그 속도 상수는 문헌에 보고되어 있는 상압에서의 속도보다 작았다. Si2H6는 낮은 온도 범위에서도 잘 분해되었으며, 중간 생성물로 많은 양의 SiH4를 만들었다. 그리고, SiH4는 고분자화되는 반응을 거치지 않고 고체실리콘을 생성하지만, Si2H6는 중간 생성물로 만들어진 SiH4와 SiH2에 의하여, 고분자화 반응을 거쳐서 고체실리콘을 만들 수 있음을 알았다.

  • PDF

유류 오염 토양의 생물학적 토양복원 설계를 위한 사전 조사 및 이를 이용한 현장복원

  • 김국진;고일원;이광표;이철효
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.322-325
    • /
    • 2003
  • 본 연구에서는 경유와 윤활유로 오염된 토양에서 유류분해능이 우수한 분해균주 5종을 분리하여 동정하였고. 분리된 미생물을 이용하여 실험실 및 현장 Pilot Test 수행으로 현장 복원에 필요한 설계인자를 도출하여 실제 현장 토양복원에 적용하였다. 미생물의 투입량은 2.0 $\times$ $10^{6}$ CFU/g 이상으로 투입하고, 투입 영양분의 조성은 오염된 탄소원의 몰비 농도와 비교하여 질소원으로는 황산암모늄, 요소, 질산암모늄 등을 질소 몰수로 첨가하구 인산원으로는 인산칼륨, 이인산칼륨 등을 인산 몰수로 공급하여 토양의 C/N/P 비율이 100:10:1~ 100:1:0.5 범위 이내로 조절되도록 오염 토양에 영양분을 공급하였으며, 경작 횟수는 3회/주 이상으로 수행하여 오염토양 TPH 5,000ppm을 40일 동안 2,000ppm 이하로 복원하였으며, 이때 생분해상수 k는 0.0229/day로 확인되었다.

  • PDF

Decay Rate and Nutrient Dynamics during Litter Decomposition of Quercus acutissima in Gongju and Jinju (공주와 진주지역에서 상수리나무 낙엽의 분해율 및 분해과정에 따른 영양염류 함량 변화)

  • Won, Ho-Yeon;Oh, Kyung-Hwan;Mun, Hyeong-Tae
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.537-545
    • /
    • 2012
  • Decay rate and nutrient dynamics during leaf litter decomposition of deciduous Quercus acutissima were compared between Gongju and Jinju for 33 months from December 2008 through March 2011. Percent remaining weight of Q. acutissima leaf litter after 33 months elapsed in Gongju and in Jinju was $41.2{\pm}0.4%$ and $28.3{\pm}0.6%$, and decay constant (k) was 0.39 and 0.61, respectively. Decomposition in Jinju was significantly faster than that in Gongju. This seemed to be related to higher temperature and precipitation in Jinju than those in Gongju during the experimental period. Initial C/N and C/P ratio of Q. acutissima leaf litter was 46.8 and 270.9, respectively. After 33 months elapsed, C/N and C/P ratios in Gongju decreased to 22.0 and 106.8, and those in Jinju decreased to 19.2 and 170.2, respectively. Initial concentration of N, P, K, Ca and Mg in Q. acutissima leaf litter was 8.31, 0.44, 4.18, 9.38, 1.37 mg/g, respectively. After 33 month elapsed, remaining N, P, K, Ca and Mg were 91.0, 85.4, 30.2, 47.9, 11.7% in Gongju, and 67.0, 54.2, 19.9, 30.0, 40.8% in Jinju, respectively. Except for Mg, remaining nutrients of decomposing leaf litter in Jinju were lower than those in Gongju. In case of N and P, initial immobilization was observed, however, only mineralization was observed in K, Ca and Mg during the whole experimental period.

Nucleophilic Substitution at a Carbonyl Carbon Atom (VII). Kinetic Studies on the Sovolysis of 2-Thenoyl Chloride in Binary Mixtures of Acetone-Water and Ethanol-Water (카르보닐 탄소원자의 친핵성 치환반응 (제7보). 물-에탄올 및 물-아세톤 혼합용매속에서 2-염화테노일의 가용매 분해반응)

  • Sohn, Jin Eon;Yoon, Sang Kee;Lee, Ik Choon
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.333-339
    • /
    • 1976
  • The rates of solvolysis for 2-thenoyl chloride have been measured in aqueous acetone and aqueous ethanol at various temperatures ranging from 20 to $40^{circ}C$. The activation parameters and the Grundwald-Winstein's slope are determined by the analysis of solvolysis rates. The results indicated that the reaction rates of solvolysis are considerably slower than those of the reaction for benzoyl chloride due to the electron donating effect of thiophene nucleus. The results also showed that the reaction proceeds with the $S_N1$ mechanism in water-rich solvents whereas the $S_N2$ character increases with the decrease of water content, and overall reaction is subject to entropy control.

  • PDF

Decay Rate and Nutrients Dynamics during Decomposition of Oak Branches (상수리나무 가지의 분해 및 분해과정에 따른 영양염류 변화)

  • 문형태
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.93-98
    • /
    • 2004
  • Decay rate and nutrient dynamics during decomposition of oak (Quercus acutissima) branches were investigated for 33-months in Kongju, Korea. After 33-months, remaining weight of B₁, B₂ and B₃ was 44.5%, 58.5% and 55.37%, respectively. Decomposition constant (k) for B₁, B₂ and B₃ was 0.294/yr, 0.195/yr, 0.215/yr, respectively. N concentration in decomposing oak branches increased in all diameter classes. After 33-months, remaining N in B₁, B₂ and B₃ was 101.2%, 91.9%, 104.4%, respectively. P concentration in decomposing oak branches increased in B₁ and B₂, and there was no immobilization period. After 33-months, remaining P in B₁, B₂ and B₃ was 57.2%, 74.4%, 53.9%, respectively. K concentration in decomposing oak branches decreased significantly. Remaining K in B₁, B₂ and B₃ was 7.7%, 17.1% and 17.2%, respectively, which was significantly lower than other nutrients. Ca concentration in decomposing oak branches increased in B₂ and B₃. After 33-months, remaining Ca in B₁, B₂ and B₃ was 58.5%, 47.8% and 75.2%, respectively. Initial concentration of Mg in oak branch was higher in smaller diameter class. After 33-months, remaining Mg in B₁, B₂ and B₃ was 44.3%, 57.9% and 47.7%, respectively.

Acid-Catalyzed Hydrolysis Reaction of Poly(vinyl acetate) (폴리(비닐 아세테이트)의 산촉매 가수분해 반응)

  • Park, Sang-Soo;Yoon, Hi-Sook
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.304-307
    • /
    • 2005
  • The acid-catalyzed hydrolysis reaction of poly(vinyl acetate) (PVAc) in water/acetic acid solution at $35^{circ}C$ was studied at two different solvent compositions. The mole fractions of vinyl acetate (Vac) and vinyl alcohol (VA) during the course of the reaction were determined by NMR, and the equilibrium constant $K_{eq}$ of the reaction was determined using the molar ratio of VAc to VA at the chemical equilibrium. $K_{eq}$ was 0.75 (${\pm}0.01$) when the VAc mole faction at the equilibrium was 0.78 (${\pm}0.01$) and it was 0.69 (${\pm}0.01$) when the VAc mole fraction was 0.57 (${\pm}$0.02). The reaction was found to be a pseudo 1-st order reaction with the rate coefficient at $3.4{\times}10^{-6}/sec$.

A Study on the Kinetics of Thermal Degradation of Polyethylene (폴리에틸렌 열분해의 속도론적 연구)

  • Kim, Myung Soo;Oh, Sea Cheon;Lee, Hae Pyeong;Kim, Hee Taik;Yoo, Kyong Ok
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.548-556
    • /
    • 1999
  • The thermal degradation of polyethylene has been studied using a nonisothermal thermogravimetric technique under a nitrogen atmosphere condition at several heating rates from 10 to $50^{\circ}C/min$. To obtain information on the kinetic parameters, the dynamic thermogravimetric analysis curve and its derivative have been analyzed by a variety of analytical methods such as Kissinger, Freeman-Carroll, Flynn-Wall, Coats-Redfern, Chatterjee-Conrad, Friedman, Horowitz-Metzger, Ozawa and Denq methods. The comparative works for the kinetic results obtained from various methods should be performed to determine the kinetic parameters, because three are tremendous differences in the calculated kinetic parameters depending upon the mathematical method taken in the analysis. From this work, it was found that the apparent activation energy of HDPE was larger than those of LDPE and LLDPE.

  • PDF

Determination of Biodegradation Rate on BPMC and Chlorothalonil (BPMC와 Chlorothalonil의 생분해율의 측정)

  • 민경진;차춘근
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.3
    • /
    • pp.249-254
    • /
    • 1999
  • The present study was performed to investigate biodegradation rate of BPMC(2-sec-butylphenyl methyl carbamate) and chlorothalonil. In the biodegradation test of two pesticides by the modified river die-away method from June 17 to August 22, 1998, the biodegradation rate constants and half-life were determined in Nakdong(A) and Kumho River(B). Bio- degradation rate of BPMC was 27% in A sampling point, 40% in B sampling point after 7 days. Biodegradation rate constants and half-life of BPMC were 0.0460 and 15.1 days in A sampling point, 0.0749 and 9.3 days in B sampling point, respectively. Biodegradation rate of chlorothalonil was 100% in A and B sampling points after 7 days. Biodegradation rate constants and half-life of chlorothalonil were 0.1416 and 4.9 hours in A sampling point, 0.1803 and 3.8 hours in B sampling point, respectively. Biodegradation rate of chlorothalonil was faster than that of BPMC. Correlation analysis between biodegradation rate constants of pesticides and water quality(DO, BOD, SS, ABS, $NH_3-N\;and\;NO_3-N$) showed significant correlation with BOD, SS and $NH_3-N$. Furthermore, regression analysis with BOD, SS and $NH_3-N$ as independent variable and biodegradation rate constant as independent variable showed a significant linear equation. These results suggested that BPMC and chlorothalonil were mainly degraded by biodegradation, and the difference in biodegradation of two pesticides was due to difference of water quality.

  • PDF

Hydrolysis of Sarin(GB) in Aqueous NaOH Solution (가성소다 수용액에서 사린(GB)의 가수분해)

  • Lee, Yong-Han;Lee, Jong-Chol;Hong, Deasik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.172-177
    • /
    • 2007
  • The hydrolysis reaction of sarin(GB), one of the nerve agents was studied in aqueous sodium hydroxide(NaOH) solutions to find the experimental conditions which can convert GB into the less toxic compounds. 10 wt% of GB was added into the aqueous NaOH(2.05 eq) in a small-scale jacket-attached reactor connected to a circulator. The reaction rate constants were measured at three temperatures(50, 70 and $90^{\circ}C$) and the reaction times required to degrade the material to > 99% were calculated at different temperatures. In this study, 10 wt% of GB was degraded to 99.99% in 1.2hr at $90^{\circ}C$ by the aqueous NaOH solution. The major hydrolysate of GB was isopropyl methylphosphonate.