• Title/Summary/Keyword: 분해도

Search Result 35,084, Processing Time 0.057 seconds

Processings of Intermediate Flavoring Substance from Low-Utilized Longfinned Squid (저활용 소형 창오징어를 이용한 풍미소재의 가공)

  • 오광수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.4
    • /
    • pp.663-668
    • /
    • 2000
  • To develop natural intermediate flavoring substances, optimal processing conditions and qualities for two stage enzyme hydrolysate (TSEH) from low-utilized small longfinned squid were investigated. The optimal conditions for TSEH method were found as digestion with Alcalase (0.2% w/w-sample, pH 8.0) at 55$^{\circ}C$ 3 hours at the 1st stage and with Neutrase (exo-peptidase, 0.2% w/w-sample, pH 6.0) at 45$^{\circ}C$ for 2~3 hours at the 2nd stage. Among the method of water extract, autolytic extract and various kinds yields, transparency and organoleptic taste. From the results of chemical experiments and sensory evaluation, longfinned squid TSEH is flavorable as the natural intermediate taste-active substances for fisheries products such as soup base, squid-taste pasty and snacks.

  • PDF

Degradation of human immunoglobulins and cytotoxicity on HeLa cells by live Trichomonas vaginalis (질편모충 단백질분해효소의 세포독성 및 인체면역글로불린 분해능)

  • 민득영;류재숙
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.1
    • /
    • pp.39-46
    • /
    • 1997
  • The present study was undertaken to determine whether live T. uaginnlis degrades human secretory IgA, serum If and IgG molecules. Human immunoglobulins were exposed to live trophozoites, parasite Iysate, and excretory-secretory product (ESP) of T ucginnlis. To determine the fragmentation of immunoglobulins, the reaction sample was subjected to SDS-PAGE and EITB, and peroxidase conjugated antihuman IgA and IgG were used as probes. Live trophozoites degraded secretory IgA, serum IgA and IgG, and degradation were pressed forward by the prolongation of the incubation time and by increasing the number of trichomonads respectively. Also the Iysates and ESP of trichomonads degraded IgA and IgG. The cysteine and serine proteinase inhibitors such as I-64, antipain, iodoacetic acid, iodoacetamide, TLCK reduced the ability of cleaving immunoglobulins. The proteinase activity and cytotoxicity of T. uaginnlis to HeLa cells were decreased when live T. vusinalis was treated with metallo-proteinase inhibitor as well as cysteine and serine proteinase inhibitors. These results suggest that proteinase secreted from live T ucginclis may play a part role in host pathogenesis by T. uosinnlis, and the cleaving ability of host immunoglobulins by the proteinase may contribute as a one of immune evasion mechanism for parasite survival in the host.

  • PDF

Improvement of Degrading Activity of Poly(butylene succinateco-butylene adipate)-Degrading Strains Isolated from Soils (토양에서 분리한 Poly(butylene succinate-co-butylene adipate) 분해균의 분해활성 증진)

  • Joo, Hyun-Jin;Kim, Mal-Nam
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.198-204
    • /
    • 2009
  • From leaf mold and reclamation site soil of the Capital area of Korea, 3 poly(butylene succinate-co-butylene adipate: PBSA)-degrading strains were isolated through the clear zone test. The PBSA-degrading activities of the strains were assessed by means of a modified Sturm test using 0.01% of PBSA film as a sole carbon source. After the modified Sturm tests for 40 days at the respective isolation temperatures, the 3 strains degraded 30%, 55% and 43% of PBSA, respectively. The isolated strains were identified to be Burkholderia cepacia PBSA-4, Bacillus licheniformisPBSA-5 and Burkholderia sp. PBSA-6 through the 16S rDNA gene sequence analysis. Among them, PBSA-5 degraded both PBSA and Poly(vinyl alcohol). The degradation activity of the PBSA degrading strains appeared to be high at moderate temperatures such as $27^{\circ}C$ and $37^{\circ}C$, and initial inoculum size of $10^{10}cfu\;mL^{-1}$ degraded PBSA 1.2~1.3 more times than that $10^9cfu\;mL^{-1}$. Addition of 0.1 or 0.5% (w/w) of gelatin, yeast extract and ammonium sulfate raised the PBSA degrading activity, and especially addition of 0.1% (w/w) of gelatin enhanced the PBSA degrading activity by more than 33%. The mixed strains degraded PBSA faster than the single strain.

Changes in Functional Properties of Alginic Acid by Enzymatic Degradation (알긴산의 부분적인 효소분해에 의한 특성 변화)

  • Joo, Dong-Sik;Lee, Jung-Suck;Cho, Soon-Yeong;Shin, Sung-Jae;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.86-91
    • /
    • 1995
  • In order to expand the utility of alginic acid in the food industry, we have investigated to prepare low viscous alginic acid using a method for degradation of alginic acid with the enzyme system of Vibrio sp. AL-145. The enzyme showed maximum activity at pH 8.0 and $37^{\circ}C$, and was stable in the pH range 7.5 to 8.5 and at temperature up to $30^{\circ}C$, and 0.5M NaCl needed for the enzyme activity. The viscosity of alginic acid decreased with the reaction time courses regardless of alginic acid and enzyme concentration, and 90% of viscosity decreased with 60 min of reaction time, but the changes of reducing sugar not exhibited. The soluble concentration of partially degradated alginic acid(PDA) in water was about 10%(w/v), and adsorption capacity of $Ca^{2+}$ ion increased with increasing the concentration of PDA. The alcohol concentration on precipitation of PDA was higher than Na-alginic acid.

  • PDF

The Biological Degradation of High Concentration of Trichloroethylene (TCE) by Delftia acidovornas EK2 (Delftia acidovorans EK2에 의한 고농도 Trichloroethylene (TCE)의 생물학적 분해 특성)

  • Park, Woo-Jung;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • In this study, we isolated 179 bacterial strains using benzene, phenol, ethylbenzene, aniline, cumene, toluene as growth substrate from TCE contaminated soils and wastewaters. All the 179 strains were screened for TCE (30 mg/L) removal (growth substrate 0.2 g/L, $30^{\circ}C$, pH 7, cell biomass 1.0 g/L (w/v)) under aerobic condition for 21 days. EK2 strain using aniline showed the highest removal efficiency (74.4%) for TCE degradation. This strain was identified as Delftia acidovorans as the results of API kit, 16S rDNA sequence and fatty acid assay. In the batch culture, D. acidovorans EK2 showed the bio-degradation for TCE in the various TCE concentration (10 mg/L to 200 mg/L). However, D. acidovorans EK2 did not show the bio-degradation in the TCE 250 mg/L. D. acidovorans EK2 also show the removal efficiency (99.9%) for 12 days in the low concentration (1.0 mg/L). Optimal conditions to degrade TCE 200 mg/L were cell biomass 1.0 g/L (w/v), aniline 0.5 g/L, pH 7 and $30^{\circ}C$. Removal efficiency and removal rate by D. acidovorans EK2 strain was 71.0% and 94.7 nmol/h for 21 days under optimal conditions. Conclusion, we expect that D. acidovorans EK2 may contribute on the biological treatment in the contaminated soil or industrio us wastewater.

The Determination of Anaerobic Biodegradability and Organic Fractionation of Agricultural Byproducts by Biochemical Methane Potential Assay Using Double First-Order Kinetic Model (반응속도 모델을 적용한 농업부산물의 혐기성 유기물분해율과 메탄생산잠재량 분석)

  • Shin, Kook-Sik;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.55-65
    • /
    • 2021
  • This study investigated methane productions and a degradation rate of organic matters by German standard method, VDI4630 test. In this study, 11 waste biomasses from agricultural fields were selected for the investigation. The objective of this study was to estimate a distribution of organic matters by using the Double first-order kinetics model in order to calculate the rate of biodegradable organic matters which degrade rapidly in the initial stage and the persistently biodegradable organic matters which degrade slowly later. As a result, all the biomasses applied in this study showed rapid decomposition in the initial stage. Then the decomposition rate began to slow down for a certain period and the rate became 10 times slower than the initial decomposition rate. This trend of decomposition rate changes is typical conditions of biomass decompositions. The easily degradable factors (k1) were raged between 0.097~0.152 day-1 from vegetable crops and persistent degradable factor (k2) were 0.002~0.024 day-1. Among these results, greater organic matter decomposition rates from VDI4630 had greater k1 values (0.152, 0.144day-1) and smaller k1 values (0.002, 0.005day-1) from cucumbers and paprika. In a meanwhile, radishes and tangerine rinds which had low decomposition rates showed 0.097 and 0.094 day-1 of k1 values and decomposition rates seems to affect k1 values.

Supercritical Water Hydrolysis of Waste Logs after Oak Mushroom Production (초임계수를 이용한 표고버섯 골목의 가수분해)

  • Koo, Bon-Wook;Lee, Jae-Won;Choi, Joon-Weon;Choi, Don-Ha;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.81-95
    • /
    • 2006
  • In order to investigate the possibility of waste logs after oak mushroom production as a source of an alternative energy and to obtain the fundamental data of supercritical water hydrolysis that has been paid attention as a new saccharification method of lignocellulosics, supercritical water hydrolysis of normal log woods (Quercus acutissima Carruth) and waste logs was carried out. With the increase of reaction time and temperature, the color of the degradation products has been dark and the degradation rate and the crystalline index increased. However the increase of reaction pressure affected the color of the degradation products and the degradation rate at only low reaction temperature. In the early stage of the reaction, the degradation of hemicellulose was progressed, while in the late stage, the cellulose was degraded. The increase of reaction time and reaction temperature (less than $415^{\circ}C$) improved the sugar yield, while at high temperature(more than $415^{\circ}C$), the sugar yield was decreased. Based on the result of the sugar yield, the optimal hydrolysis condition of Q. acutissima Carruth by supercritical water was determined to be $415^{\circ}C$, 60 seconds and 230 pressure bar with the sugar yield of 2.68% (w/w). At the optimal condition, the supercritical water hydrolysis of waste logs after the mushroom production was carried out and the sugar yield was increased to 358% (w/w). The major degradation products of waste logs by supercritical water hydrolysis were 1,1'-oxybis-benzene and 1,2-benzendicarboxylic acid by the GC-MS analysis. At the reaction condition with low degradation rate, the fatty acids such as pentadecanoic acid, 14-methyl-heptadecanoic acid were identified. With the increase of the reaction temperature and time, the amounts of phenol and benzene were increased, but the reaction pressure did not affect the kinds of degradation products. Holocellulose content was 60.6~79.2% in the water insoluble residue and the monosaccharide yield of the water insoluble residue was 49.2~675% by the acid hydrolysis. The monosaccharide yield of water-soluble portion was increased largely by the second hydrolysis using dilute acid.

Physicochemical and Functional Properties of Pepsin-modified Myofibrillar protein from Sardine, Sardinops melanostica (Pepsin으로 수식된 정어리 myofibrillar protein의 특성)

  • Kim, Byung-Mook;Kim, Byung-Ryul
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.110-116
    • /
    • 1994
  • In order to study the effects of enzyme modification on the physico-chemical and functional properties of myofibrillar protein prepared from the frozen sardine, Sardinops melanostica, the protein was hydrolyzed with pepsin under the enzyme-substrate ratio 1:100 at $37^{\circ}C$ and pH 1.65 for 1, 4, 8, 12, and 24 hr, respectively. The properties of pepsin-modified sardine myofibriliar protein were determined. The extents of proteolysis with pepsin as a fuction of time was showed a typical enzyme hydorlysis curve with an initial region of 4 hour period followed by plateau region. The SDS-acrylamide slab gel electrophoresis patterns of pepsin-modified proteins showed mainly disappearances of minor protein bands, but no changes of main protein bands. The gel filtration patterns through Sephadex G-75 of sardine myofibrillar protein showed two big peaks and three small peaks. All the small peaks were disappearanced by proteolysis with pepsin in one hour. and during the period of proteolysis the fast big peak became gradually smaller and the late big peak eluted more slowly. By proteolysis, the emulsifying activity and emulsifying capacity of sardine myofibrillar protein were all decreased. The effects of pepsin-modification on emulsifying capacity were greater than those on emulsifying activity of protein. The aeration capacity of the protein was increased about 1.9 folds and the foam stability decreased to 0.6 folds of control by pepsin-modification. The pepsin-modified sardine myofibrillar proteins showed about 0.6 folds of heat coagulation and 1.4 folds of viscosity of control. The pH dependence of solubilities of sardine myofibrillar protein showed two isoelectric areas of pH 5 and 9. The pepsin-modified protein showed more clear pH dependences at the early stage but not at the late stage of proteolysis.

  • PDF

Relationship between BCS during Prepartum, Calving and Postpartum Periods and Fertility of Korean Brown Cattle (한우에서 분만 전, 분만 시 및 분만 후의 body condition score와 이후의 번식능력과의 상관관계)

  • Choi, In-Su;Kim, Ui-Hyung;Kang, Hyun-Gu;Kim, Ill-Hwa
    • Journal of Veterinary Clinics
    • /
    • v.25 no.4
    • /
    • pp.280-285
    • /
    • 2008
  • This study evaluated the correlation between the body condition score (BCS) during prepartum, calving and postpartum periods and the reproductive performance of Korean brown cattle. The BCSs of 33 cows who underwent 73 calvings over a two and a half period [the parities of the cows ranged from 1 to 4 ($mean{\pm}SD,\;2.0{\pm}0.9$)] were scored at months 2 and 1 prepartum, calving, and every month postpartum until month 7. A marked prepartum loss of BCS in the month preceding calving was noted. The correlations between the interval from calving to conception and the month 1 prepartum, calving and months 1 and 2 postpartum BCSs were analyzed by Pearson correlation analysis. The correlation between the interval from calving to conception and the prepartum body condition loss was also evaluated. The interval from calving to conception correlated positively with the month 1 prepartum BCS (r = 0.389, P = 0.0007) and the prepartum body condition loss (r = 0.488, P < 0.0001) but did not correlate significantly with the BCS at calving (r=-0.070, P=0.56) or months 1 (r=0.107, P=0.37) or 2 (r=0.102, P=0.39) postpartum. The prepartum body condition loss correlated positively with the month 1 prepartum BCS (r=0.587, P<0.0001). In conclusion, the month 1 prepartum BCS may be a good criterion for predicting subsequent reproductive performance. Moreover, the prevention of obesity and/or excessive prepartum body condition loss may result in higher fertility in Korean brown cattle.