• Title/Summary/Keyword: 분해능력

Search Result 503, Processing Time 0.023 seconds

Biodegradation of triphenyl methane dyes by white rot fungus, Trametes versicolor (Trametes versicolor 의한 triphenyl methane계 염료의 분해)

  • Baek, Seung-A;Choi, Jaehyuk;Lee, Tae-Soo;Im, Kyung-Hoan
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.63-67
    • /
    • 2015
  • White rot fungi produce lignin-degrading enzymes such as laccase, manganese peroxidase and lignin peroxidase. These extracellular oxidases efficiently degrade recalcitrant synthetic dyestuffs with diverse chemical structures. Here, we examined the activities of lignin-degrading enzymes in Trametes versicolor using triphenyl methane dyes, crystal violet (CV) and malachite green (MG). Both dyes were decolorized by T. versicolor in solid and liquid culture conditions. T. versicolor decolorized MG more quickly than CV in both conditions. Among three ligninolytic enzymes, laccase was most abundantly found in the decolorization processes of CV and MG. However, higher activity of laccase was needed to degrade CV than MG. The much less activity of MnP was also detected. But the increase of MnP activity was well corresponded to the decolorization efficiency of CV, suggesting the involvement of MnP in CV degrading process. However, its role in the degradation process of MG is supposed to be subsidiary to laccase.

Dye Removal by Phlebia tremellosa and Lignin Degrading Enzyme Transformants (아교버섯(Phlebia tremellosa)의 리그닌 분해효소 형질전환체를 이용한 염료의 탈색)

  • Kum, Hyun-Woo;Ryu, Sun-Hwa;Lee, Sung-Suk;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.93-95
    • /
    • 2010
  • White rot fungi which have lignin degrading enzymes show high degrading activity to diverse recalcitrant compounds such as polycyclic aromatic compounds, dyes, explosives and endocrine disrupting chemicals. We have examined decolorizing activity of dyes by Phlebia tremellosa and two transformants which had genetically transformed using laccase or manganese peroxidase (MnP) gene. In case of methyl green, wild type strain showed 50% decolorization while laccase transformant (TF2-1) and MnP transformant (T5) showed more than 90% decolorization on day 3. Remazol brilliant blue R(RBBR) was decolorized up to 85% by two transformants while the wild type showed 67% decolorization on day 3. Transformants TF2-1 and T5 both showed increased laccase and MnP activity respectively during the whole growing phase.

Biological Control of Plant Diseases and Biodegradation of Pesticides by Gliocladium virens (Gliocladium virens를 이용한 식물병의 생물적 방제 및 유기합성농약의 분해)

  • 박용하;이용세
    • Korean Journal Plant Pathology
    • /
    • v.12 no.2
    • /
    • pp.255-265
    • /
    • 1996
  • 토양에 존재하는 진균인 Gliocladium virens는 식물병을 감소 또는 방제할 수 있는 생물학적인 특성에 의하여 G. virens는 지난 수십년간 실용가능성이 큰 생물학적 방제균(또는 길항균)으로 집중적으로 연구되었다. 이 균이 식물병의 발생을 감소시키는 생물적 방제효과는 항생작용, 중복기생, 근권에서의 생존과 집단번식, 뿌리표면에서의 정착 등에 의한 것으로 분류되고 있다. 특히, 항생물질인 gliotoxin, gliovirin, viridin 등은 Rhizoctonia solani 및/또는 Pythium spp. 등에 항생효과가 뚜렷하고, 식물병의 발생과 직접적인 상관관계를 나타내고 있어 G. virens의 식물병의 방제에 관련된 중요한 작용기작으로 제시되어 있다. 또한, 근권에서 이균의 생존과 집단증식 및 뿌리표면에서의 정착은 식물병의 방제와 상관관계를 나타낼 수 있는 중요한 작용기작으로 제시되고 있다. 그러나 이균이 R. solani 등에 기생하는 현상은 식물병의 생물적 방제의 직접적인 연관관계를 나타내고 있지 않다. G. virens을 이용의 생물적 방제효과를 증진시키기 위한 방법으로 다음과 같은 두 가지 방법을 들 수 있다. 첫째, 길항효과가 높은 G. virens 균주를 선발하기 위하여 여러 종류의 토양에서 길항력이 높은 G. virens의 선발이 지난 수십년간 진행되고 있다. 또한, 특정 길항효과를 발현하는 유전자를 G. virens의 염색체에 도입하고 이를 발현시킴으로써 생물적 방제효과를 증진시키는 것으로 이러한 방법은 1980년 후반부터 진행되고 있다. 둘째, G. virens의 길항효과가 최대의 효율로 발현될 수 있도록 최적의 미세환경을 갖추고 있으며 농민이 편리하게 사용할 수 있는 G. virens의 운송매체의 개발이 중요하다. 운송매체의 개발에 의한 'Glioguard'는 G. virens의 포자를 alginate 입자에 제형화한 것으로서 미국에서 시판되고 있다. Aldicarb, metalaxyl, atrazine 등의 농약을 분해할 수 있는 능력은 G. virens의 다른 생물적 특성중의 하나이다. 특히, parathion을 분해할 수 있는 Flavobacterium sp.의 유전자(opd)가 G. virens의 염색체에 도입되여 발현될 수 있는 방법이 제시되었으며, 이는 G. virens을 이용한 토양에서의 특정한 농약의 분해효율을 증진시킬수 있는 가능성을 제시한 것이다. 그러나, G. virens를 이용한 농약의 생물적 분해에 관한 연구는 기초단계로 평가되고 있으며, 포장에서 이를 실용화하기 위해서는 향후 지속적인 연구가 필요하다.

  • PDF

Properties of Amylase produced from Higher Fungi Ganoderma lucidum (약용단자 균류 영지가 생산하는 Amylase의 효소학적 성질)

  • Do, Jae-Ho;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.173-178
    • /
    • 1985
  • Extracellular amylase from tile filtrate of the submerged culture of Ganoderma lucidum was partially purified by ammonium sulfate precipitation and its properties were studied. The optimum pH and temperature of the enzyme activity were 5.5 and 5$0^{\circ}C$. respectively. This enzyme was most stable at pH 5.0 and stable up to 3$0^{\circ}C$, but it lost completely the activity when it was treated at 6$0^{\circ}C$ for 10 min. The enzyme was activated by the addition of M $n^{++}$, $C^{++}$ and C $u^{++}$, but inhibited by H $g^{++}$, A $g^{++}$ And various enzyme inhibitors and chemical reagents did not affect the enzyme activity. The enzyme hydrolyzed the boiled amylaceous polysaccharides, but it hydrolyzed raw starches very slowly. The activation energy of the enzyme for soluble starch was calculated and found to be 7.06 Kcal per mole. The Km values of the enzyme for soluble starch, amylose, amylopectin and glycogen were 0.16, 0.37, 0.19, and 0.16mg/$m\ell$, respectively. Maltose was found to inhibit the enzyme activity and kinetic analysis revealed a competitive type of inhibition.n.n.n.n.n.

  • PDF

Screening of Inhibitors of Extracellular Serine Protease of Acanthamoeba castellanii from Mushroom Extracts (버섯 추출물로부터 Acanthamoeba castellanii의 세포외 Serine 단백질분해효소 저해제 탐색)

  • Lee, Seung-Eun;Sancheti, Sandesh;Sancheti, Shruti;Choi, Mie-Young;Seo, Sung-Yum
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.178-182
    • /
    • 2008
  • Although the number of patients with Acanthamoeba keratitis has increased dramatically since the widespread use of contact lens, it is still very hard to cure the disease. The proteases from the Acanthamoeba were reported to play important role in the pathogenesis of keratitis. In this study, the inhibitors for extracellular serine proteases of A. castellanii were screened from the extracts of 230 mushroom samples collected from various regions of Korea. The mushrooms were extracted with methanol and water ($65^{\circ}C$). Filtered and concentrated extracts (0.3 mg/ml) were preincubated with proteases before addition of peptide substrate N-succinyl-ala-ala-pro-phe p-anilide. The selected extracts showing strong inhibitory effects were characterized. Although inhibition with single extract was not so high enough, the complete inhibition was achieved with combination of two extracts. The selected extract showed little effect on other serine proteases such as thrombin (human and bovine) and on general protease such as protease K.

토양에서 분리한 pseudomonas sp. 에 의한 phosphinothricin 과 glyphosate의 생분해

  • 정광보;조홍범;채영규;최영길
    • Korean Journal of Microbiology
    • /
    • v.30 no.1
    • /
    • pp.47-52
    • /
    • 1992
  • This study describes isolation and identification of a soil bacterium which is degradable of phosphinothricin and improvement of the isolated strain by using mutagenesis and spheroplast fusion. The experiment was performed to search for a possibility of development of a new strain which is both PPT-degradable and glyphosate-resistant by using interspecies cell fusion between the PPT-degrading bacterium. Pseudornonu.\ puucimohlis and a glyphosate -resistant strain, Pseudornonu.~ cc,pucicl. Auxotrophic mutants were obtained by the treatement of P. puucimohili.\ with ethylmethanosulfate, and used to cell fusion. Lysozyme and EDTA were used to spheroplast formation and regeneration rates :)f the spheroplast were 6.5'%1 in P. pauc.irnohili.\ and 8.8% in P.ci,j~u[,i(lr, espctively. Polyethylenglycol 5.000 was used to cell fusion as fusogen. The fusant\ulcorner F1. F2. F\ulcorner and F4 werc- obtained by the intra- and interspecies cell fusion. The fusant Fl of intraspecies cell fusion was higher to the wild type by 1 I'%l in PPT degrading ability, and the fusant F3 of inierspesis cell fusion developed plyphosatc-resistant and PPI-dcgrading ability which were propertics of two parental strains.

  • PDF

Isolation and Characterization of 3,4-Dichloroaniline Degrading Bacteria from a Sandbank (갯벌에서 분리한 3,4-Dichloroaniline 분해 미생물의 특성)

  • Kim, Young-Mog
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.275-281
    • /
    • 2006
  • The compound 3,4-dichloroaniline (DCA) is an aromatic amine used as an intermediate product in the synthesis of herbicides, azo-dyes and harmaceuticals. It is also a degradation product of some herbicides (diuron, propanil, and linuron) and of trichlorocarbanilide, a chemical used as active agent in the cosmetic industry. 3,4-DCA, however, is considered potential pollutants due to their toxic and recalcitrant properties to humans and other species. A bacterium capable of growth on 3,4-DCA was isolated by dilution method from 3,4-DCA-containing enrichment culture. Finally, a strain, YM-14, capable of degrading efficiently 3,4-DCA was isolated from a sandbank. The isolated strain, YM-14 was identified to be Arthrobacter sp.. Fifty ppm 3,4-DCA in 1/10 LB media was completely degraded by the growth of Arthrobacter sp. YM-14 for 12 h at $30^{\circ}C$. The isolated strain is capable of growth on 3,4-DCA as sole carbon source and also able to degrade other chloroaniline compounds. Also, the isolated strain showed high level of catechol 1,2-dioxygenase activity by 3,4-DCA exposure. The catechol 1,2-dioxygenase was supposed to be ones of the important factors for 3,4-DCA degradation.

  • PDF

Isolation and Characterization of 3,4-Dichloroaniline Degrading Bacteria (3,4-Dichloroaniline 분해 미생물의 분리 및 특성)

  • Kim, Young-Mog;Park, Kun-Ba-Wui;Kim, Won-Chan;Han, Won-Sub;Yu, Choon-Bal;Rhee, In-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.245-249
    • /
    • 2007
  • Chloroanilines are widely used in the production of dyes, drugs and herbicides. Chloroanilines, however, are considered potential pollutants due to their toxic and recalcitrant properties to humans and other species. With the increase of necessity of bioremediation, this study was conducted to isolate the chloroanilines-degrading bacteria. A bacterium capable of growth on 3,4-dichloroaniline (DCA) was isolated by the 3,4-DCA-containing enrichment culture. The strain KB35B was identified as Pseudomonas sp. and also able to degrade several chloroanilines. The isolated strain showed high level of catechol 2,3-dioxygenase activity in the presence of 3,4-DCA. The activity of catecho1 2,3-dioxygenase was supposed to be ones of the important factors for 3,4-DCA degradation. The activity toward 4-methykatechol was 60.6% of that of catechol, while the activity toward 3-methylcatechol and 4-chlorocatechol were 27.0 and 13.5%, respectively.

Characterization Study of Crude Oil Degrading Microbiology Isolated from Incheon Bay (인천 연안에서 분리한 원유 분해 미생물의 특성 연구)

  • Choi, Hye Jin;Oh, Bo Young;Han, Young Sun;Hur, Myung Je;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.694-699
    • /
    • 2014
  • Indigenous microorganisms play decisive roles in biodegradation. In this study, eighty strains of hydrocarbon-degrading microbes were isolated from Incheon Bay. Among them, 12 strains were selected by an oil film collapsing method. The bacterial strain 'Incheon9' was eventually selected based on its relatively higher lipase and emulsification activities, and was identified as Acinetobacter sp. (NCBI accession code: KF54854). The optimum condition for the growth and emulsification activity of Acinetobacter sp. Incheon9 was $20^{\circ}C$, pH 7, and 1% NaCl. The optimum time for the best production of biosurfactant was 72 hrs. The oil degradation ability of Acinetobacter sp. Incheon9 was investigated by measuring the residual oils in the culture medium by gas chromatography (FID). This research provides foundational data for eco-friendly environmental remediation by microorganisms.

Bio-barrier Formation by Biomass Injection into Soil (미생물 토양 주입을 통한 Bio-barrier 형성)

  • Kim, Geon-Ha;Song, Youngwoo;Gu, Dongyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.927-938
    • /
    • 2000
  • When microorganism is injected into porous medium such as soils along with appropriate substrate and nutrients, biomass retained in the soil pore. Soil pore size and shape are varied from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrates and nutrients. Biomass-soil mixture was evaluated its applicability to the field condition as an alternative liner material in landfill by measuring hydraulic conductivity change after repetitive freeze-thaw cycles. Resistance of biofilm to chemical solution and degree of biodegradation were measured through column test.

  • PDF