• Title/Summary/Keyword: 분해기법

Search Result 851, Processing Time 0.022 seconds

A Study on Signal Processing of Rear Radars for Intelligent Automobile (지능형 차량을 위한 후방 감시용 레이더 신호 처리 기법에 관한 연구)

  • Choi, Gak-Gyu;Han, Seung-Ku;Kim, Hyo-Tae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1070-1077
    • /
    • 2011
  • This paper introduces a radar signal processing technique for intelligent rear view monitoring of an automobile. The linear frequency modulation-frequency shift keying(LFM-FSK) waveform, which is the combination of frequency modulation continuous wave(FMCW) and frequency shift keying(FSK) waveform, is employed to simultaneously estimate the range, relative aspect angle, and velocity of an automobile. Hence, it can be applied to monitor the rear view of an automobile. FMCW waveform has high range resolution capability, but it produces ghost targets under a multiple target environment. In contrast, FSK waveform can provide high velocity resolution and avoids the problem of ghost targets. However, it fails to identify multiple targets along the radar's line of sight. With LFM-FSK waveform, we can estimate the ranges and velocities of multiple targets with very high resolution, which avoids the ghost target problem of an FMCW waveform. Simulation result shows that LFM-FSK wavefrom is suitable for use in the lane change assistance system for an automobile.

Modified Block Diagonalization Precoding with Greedy Approach (Greedy 기법을 이용한 수정된 블록 대각화 프리코딩 기법)

  • Kim, Sung-Tae;Seo, Woo-Hyun;Kwak, Kyung-Chul;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.79-85
    • /
    • 2008
  • Dirty Paper Coding(DPC) can achieve the sum capacity of a multiuser multiple-input multiple-output(MU MIMO) broadcast channels. However, due to the high computational complexity of the successive encoding and decoding, deploying DPC in real systems is impractical. As one of practical alternatives to DPC, Block Diagonalization(BD) was researched. BD is an extension of the zero-forcing preceding technique that eliminates interuser interference(IUI) in downlink MIMO systems. Though BD has lower complexity than DPC, BD shows poor sum capacity performance. We show that sum capacity performance of BD is degraded due to no IUI constraint. Then, we modify BD to improve its sum capacity performance with relaxing the constraint and sub optimal channel set searching. With simulation results, it can be verified that our modification in BD induces some improvement in sum capacity performance.

A Post-Quantum Multi-Signature Scheme (양자 컴퓨팅 환경에서 안전한 다중 서명 기법)

  • Ko, Chanyoung;Lee, Youngkyung;Lee, Kwangsu;Park, Jong Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.517-526
    • /
    • 2021
  • Recently, the acceleration of the development of quantum computers has raised the issue of the safety of factorization and discrete logarithm based digital signature schemes used in existing Internet environments. To solve the issue, several digital signature schemes are presented that are safe in post-quantum computing environments, including standardization work by the National Institute of Standards and Technology(NIST). In this paper, we design and present a multi-signature scheme based on the TACHYON announced by Behnia et al. in 2018 CCS conference, and prove the security. Multi-signature schemes are key techniques that can distribute the dependence of cryptocurrency-wallet on private keys in the cryptocurrency field, which has recently received much attention as an digital signature application, and many researchers and developers have recently been interested. The multi-signature scheme presented in this paper enables public key aggregation in a plain public key model, which does not require additional zero-knowledge proof, and can construct an effective scheme with only an aggregated public key.

A study on the multifrontal method in interior point method (내부점 선형계획법에서의 멀티프런탈방법에 관한 연구)

  • 김병규;박순달
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.09a
    • /
    • pp.370-380
    • /
    • 1995
  • 선형계획법의 해법으로 최근에는 내부점기법(Interior Point Method)가 관심 을 끌고 있다. 이 내부점 기법은 계산복잡도 뿐만 아니라 수행속도면에서도 우수한 결과를 보이고 있다. 이 방법은 매 회 대칭양정치(Symmetric Positive Definite)인 선형시스템을 풀어야 하는데 이 과정이 전체 내부점 수 행시간의 80-90%를 차지한다. 따라서 내부점 기법의 수행속도는 대칭양정치 인 선형시스템을 효율적으로 푸는 방법에 달려 있다. 대칭양정치인 선형시스 템을 풀기 위해서는 상하분해를 이용하게 되는 데 가우스소거를 이용해서 상하 분해를 하는 경우 매 단계에서 행렬의 모든 요소를 가지고 있을 필요 가 없다. 행렬의 모든 요소에 대한 정보를 동시에 필요로 하지 않는다. 즉, 현 단계에서 가우스소거와 관련된 열들에 대한 정보만 있으면 상하 분해가 가능하고 이러한 개념을 이용한 방법이 프런탈방법이다. 프런탈 방법은 대형 선형계획 문제를 풀기에 유리하다는 장점이 있다. 이러한 프런탈 방법을 확 장해서 동시에 여러 개의 프런탈을 계산하는 방법이 멀티프런탈방법이다. 이 방법은 알고리듬 자체가 병렬처리에 적합하기 때문에 병렬처리와 관련해서 도 많은 연구가 수행되고 있다. 본 연구에서는 삭제나무(Elimination Tree)를 이용한 프런탈 방법과 프런탈방법에 슈퍼노드의 개념을 도입한 슈퍼노들 프 런탈방법등에 대해서 이제까지의 연구 현황을 알아보고 프런탈방법에 적합 하고 효율적인 자료 구조와 멀티프런탈 방법에 적용 가능한 병렬알고리듬에 대하여 연구하고자 한다. 본 연구결과 기대효과로는 프런탈 방법에 적합하고 효율적인 자료 구조와 멀티프런탈 방법에 적용 가능한 병렬알고리듬을 개발 함으로써 내부점 선형계획법의 수행속도의 개선에 도움이 될 것이다.성요소들을 제시하였다.용자 만족도가 보다 높은 것으 로 나타났다. 할 수 있는 효율적인 distributed system를 개발하는 것을 제시하였다. 본 논문은 데이타베이스론의 입장에서 아직 정립되어 있지 않은 분산 환경하에서의 관계형 데이타베이스의 데이타관리의 분류체계를 나름대로 정립하였다는데 그 의의가 있다. 또한 이것의 응용은 현재 분산데이타베이스 구축에 있어 나타나는 기술적인 문제점들을 어느정도 보완할 수 있다는 점에서 그 중요성이 있다.ence of a small(IxEpc),hot(Tex> SOK) core which contains two tempegatlue peaks at -15" east and north of MDS. The column density of HCaN is (1-3):n1014cm-2. Column density at distant position from MD5 is larger than that in the (:entral region. We have deduced that this hot-core has a mass of 10sR1 which i:s about an order of magnitude larger those obtained by previous studies.previous studies.업순서들의 상관관계를 고려하여 보다 개선된 해를 구하기 위한 연구가 요구된다. 또한, 준비작업비용을 발생시키는 작업장의 작업순서결정에 대해서도 연구를 행하여, 보완작업비용과 준비비용을 고려한 GMMAL 작업순서문제를 해결하기 위한 연구가 수행되어야 할 것이다.로 이루어 져야 할 것이다.태를 보다 효율적으로 증진시킬 수 있는 대안이 마련되어져야 한다고 사료된다.$\ulcorner$순응$\lrcorner$<

  • PDF

Design of 2D MUSIC Algorithm to Reduce Computational Burden (연산량 감소를 위한 2D MUSIC 알고리즘 설계)

  • Choi, Yun Sub;Jin, Mi Hyun;Choi, Heon Ho;Lee, Sang Jeong;Park, Chansik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1077-1083
    • /
    • 2012
  • The jamming countermeasures in GNSS includes anti-jamming technique and jammer localization technique. In both techniques, direction of jamming signal is important and generally the MUSIC algorithm is used to find the direction of jamming signal. The MUSIC is super-resolution algorithm for detecting incident direction of signal. But, the search time of MUSIC algorithm is too long because all candidates of incidence angle are searched. This paper proposes the new method that has less computational burdens and therefore faster than the conventional MUSIC algorithm. The proposed method improves performance speed by reducing unnecessary calculations. In the proposed method, the cost function of conventional MUSIC algorithm is decomposed into the sum of squares and if the partial sum of cost function is larger than the minimum cost function so far, then the candidate is rejected and next candidates are searched. If the computed cost function is less than the minimum cost function so far, the minimum cost function so far is replaced with newly computed value. The performance of the proposed method was compared with the conventional MUSIC algorithm using the simulation. The accuracy of the estimaed direction of jamming signal was same as the conventional MUSIC while the search speed of the proposed method was 1.15 times faster than the conventional MUSIC.

Steganalysis Based on Image Decomposition for Stego Noise Expansion and Co-occurrence Probability (스테고 잡음 확대를 위한 영상 분해와 동시 발생 확률에 기반한 스테그분석)

  • Park, Tae-Hee;Kim, Jae-Ho;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.94-101
    • /
    • 2012
  • This paper proposes an improved image steganalysis scheme to raise the detection rate of stego images out of cover images. To improve the detection rate of stego image in the steganalysis, tiny variation caused by data hiding should be amplified. For this, we extract feature vectors of cover image and stego image by two steps. First, we separate image into upper 4 bit subimage and lower 4 bit subimage. As a result, stego noise is expanded more than two times. We decompose separated subimages into twelve subbands by applying 3-level Haar wavelet transform and calculate co-occurrence probabilities of two different subbands in the same scale. Since co-occurrence probability of the two wavelet subbands is affected by data hiding, it can be used as a feature to differentiate cover images and stego images. The extracted feature vectors are used as the input to the multilayer perceptron(MLP) classifier to distinguish between cover and stego images. We test the performance of the proposed scheme over various embedding rates by the LSB, S-tool, COX's SS, and F5 embedding method. The proposed scheme outperforms the previous schemes in detection rate to existence of hidden message as well as exactness of discrimination.

Power and Offset Allocation for Spatial-Multiplexing MIMO System with Rate Adaptation for Optical Wireless Channels (다중 입출력 무선 광채널에서의 공간 다중화 기법의 적응적 전송을 위한 광출력과 오프셋 할당 기법)

  • Park, Ki-Hong;Ko, Young-Chai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.8-18
    • /
    • 2011
  • Visible light communication (VLC) using optical sources which can be simultaneously utilized for illumination and communication is currently an attractive option for wireless personal area network. Improving the data rate in optical wireless communication system is challenging due to the limited bandwidth of the optical sources. In this paper, we design the singular value decomposition (SVD)-based multiplexing multi-input multi-output (MIMO) system to support two data streams in optical wireless channels. In order to improve the spectral efficiency, the rate adaptation using multi-level pulse amplitude modulation (PAM) is applied according to the channel condition and we propose the method to allocate the optical power, the offset and the size of modulation scheme theoretically under the constraints of the nonnegativity of the modulated signals, the aggregate optical power and the bit error rate (BER) requirement. The simulation results show that the proposed allocation method gives the better performance than the method to allocate the optical power equally for each data stream.

A Study on the Improvement of Image Fusion Accuracy Using Smoothing Filter-based Replacement Method (SFR기법을 이용한 영상 융합의 정확도 향상에 관한 연구)

  • Yun Kong-Hyun
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.85-94
    • /
    • 2006
  • Image fusion techniques are widely used to integrate a lower spatial resolution multispectral image with a higher spatial resolution panchromatic image. However, the existing techniques either cannot avoid distorting the image spectral properties or involve complicated and time-consuming decomposition and reconstruction processing in the case of wavelet transform-based fusion. In this study a simple spectral preserve fusion technique: the Smoothing Filter-based Replacement(SFR) is proposed based on a simplified solar radiation and land surface reflection model. By using a ratio between a higher resolution image and its low pass filtered (with a smoothing filter) image, spatial details can be injected to a co-registered lower resolution multispectral image minimizing its spectral properties and contrast. The technique can be applied to improve spatial resolution for either colour composites or individual bands. The fidelity to spectral property and the spatial quality of SFM are convincingly demonstrated by an image fusion experiment using IKONOS panchromatic and multispectral images. The visual evaluation and statistical analysis compared with other image fusion techniques confirmed that SFR is a better fusion technique for preserving spectral information.

  • PDF

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.

Decision-Feedback Detector for Quasi-Orthogonal Space-Time Block Code over Time-Selective Channel (시간 선택 채널에서의 QO-STBC를 위한 피드백 결정 검출기)

  • Wang, Youxiang;Park, Yong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.933-940
    • /
    • 2009
  • This paper proposes a robust detection scheme for quasi-orthogonal space-time block code over time-selective fading channels. The proposed detector performs interference cancellation and decision feedback equalization to remove the inter-antenna interference and inter-symbol interference when the channel varies from symbol to symbol. Cholesky factorization is used on the channel Gram matrix after performing interference cancellation to obtain feed forward equalizer and feedback equalizer. It is shown by simulations that the proposed detection scheme outperforms the conventional detection schemes and the exiting detection schemes to time-selectivity.