• Title/Summary/Keyword: 분해균주

Search Result 1,194, Processing Time 0.032 seconds

Isolation of a New Agar Degrading Bacterium, Maribacter sp. SH-1 and Characterization of its Agarase (신규 한천분해세균 Maribacter sp. SH-1의 분리 및 효소 특성조사)

  • Lee, Chang-Eun;Lee, Sol-Ji;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.156-162
    • /
    • 2016
  • In this study, we isolated a new agar-degrading marine bacterium and characterized its agarase. An agardegrading marine bacterium SH-1 was isolated from seawater, collected from the seashore of Namhae in Gyeongnam province, Korea, and cultured in marine agar 2216 media. It was identified as Maribacter. sp. SH-1 by phylogenetic analyses, based on 16S rRNA gene sequence. The extracellular agarase was extracted from culture media of Maribacter sp. SH-1 and characterized. Its relative activities were 56, 62, 94, 100, and 8% at 20, 30, 40, 50, and 60℃, respectively, whereas 15, 100, 60, and 21% relative activities were observed at pH 5, 6, 7, and 8, respectively. Its extracellular agarase exhibited maximum activity (231 units/l) at pH 6.0 and 50℃, in 20 mM Tris-HCl buffer. Therefore, this agarase would be applicable as it showed the maximum activity at the temperature at which the agar is in a sol state. Furthermore, the agarase activities remained over 90% at 20, 30, and 40℃ after 0.5 h exposure at these temperatures. Thin layer chromatography analysis suggested that Maribacter sp. SH-1 produces extracellular β-agarase, as it hydrolyzes agarose to produce neoagarooligosaccharides, such as neoagarohexaose (34.8%), neoagarotetraose (52.2%), and neoagarobiose (13.0%). Maribacter sp. SH-1 and its β-agarase would be useful for the production of neoagarooligosaccharides, which shows functional properties, like skin moisturizing, skin whitening, inhibition of bacterial growth, and delay in starch degradation.

Screening of Organo Phosphorus Insecticide Fenitrothion-Degrading Microorganisms (유기인계 살충제 fenitrothion 분해미생물 탐색)

  • Choi, Hyuek;Kim, Bok-Jin;Bae, Do-Yong;Lee, Young-Deuk;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 1998
  • Fenitrothion-degrading microorganisms were isolated from 124 sampling sites of paddy, upland, forest and polluted soil, and wastewater. A total of 1,071 strains were isolated from each selective medium supplemented with 50mg/l of fenitrothion - nutrient agar (NA) 601, potato dextrose agar (PDA) 201, Actinomycetes isolation agar (AIA) 168 and basal salt medium (BSM) 101, respectively. Twenty-eight effective strains of them, which showed more than 80% degradation of fenitrothion by the gasliquid chromatography(GLC) analysis. were successfully selected from each liquid culture supplemented with 50mg/l of fenitrothion - NB 12(upland soil 3, paddy soil 3, forest soil 2, polluted soil 4), PDB 8(upland soil 1, paddy soil 2, forest soil 2, polluted soil 3) and PSB 8(upland soil 1, forest soil 1, polluted soil 6), respectively. Four strains - NPal, NFol, PFol and BPol, which have the most powerful degradation activity were finally selected among 28 fenitrothion-degrading microorganisms based on the degradation rate at the concentration of 100mg/l fenitrothion in enrichment media.

  • PDF

Isolation and Characterization of Soil Bacteria Degrading a Fungicide Defenoconazole (살균제 디페노코나졸 분해 세균 분리 및 특성 분석)

  • Ahn, Jae-Hyung;Ro, Yu-Mi;Lee, Gwan-Hyeong;Park, InCheol;Kim, Wan-Gyu;Han, Byeong-Hak;You, Jaehong
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.349-354
    • /
    • 2016
  • Triazole fungicides occupy an important portion in the global fungicide market and are relatively persistent in soil compared to the other fungicides, suggesting possible adverse effects of the fungicides on human health and environment. In this study, we tried to isolate microorganisms from orchard soils, which can decompose the triazole fungicides, tebuconazole, fluquinconazole, and difenoconazole. Only difenoconazole was completely degraded in the enrichment culture, from which several difenoconazole-degrading bacteria were isolated. They showed the same rep-PCR pattern thus only one strain, C8-2, was further studied. The strain was identified as Sphingomonas sp. C8-2 based on its 16S rRNA gene sequence and decomposed 100 mg/L of difenoconazole in a minimum medium to an unknown metabolite with a molecular weight of 296 within 24 hours. The inhibition effect of the metabolite against representative soil microorganisms significantly decreased compared to that of difenoconazole thus the bacterial strain is expected to be used for the detoxification of difenoconazole in soil and crop.

In-situ Bioremediation of Total Petroleum Hydrocarbons-Contaminated Soil by Pseudomonas Species (토양 내 TPH(Total Petroleum Hydrocarbons)의 생물학적 분해 연구)

  • Kim, Jee-Young;Lee, Sang-Seob
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • We previously showed that five strains belonging to Pseudomonas could remove TPH (Total Petroleum Hydrocarbons) efficiently when they are applied to TPH-contaminated soil. We optimized the bioremediation condition using different hydrocarbons and nutrients conditions to improve the efficiency. We setup lab-scale column bioreactor to monitor TPH and diesel removal efficiency. When we applied five Pseudomonas sp. mixtures to 25,000 $mg{\cdot}kg^{-1}$ TPH-contaminated soil (diesel 10,000 $mg{\cdot}kg^{-1}$, kerosene 10,000 $mg{\cdot}kg^{-1}$, gasoline 5,000 $mg{\cdot}kg^{-1}$) with the optimum condition, 76.3% of TPH removal efficiency was shown for 25 days. Meanwhile, in the application of five Pseudomonas sp. mixtures to 20,000 $mg{\cdot}kg^{-1}$ diesel-contaminated soil with the optimum condition, 99.2% of diesel removal efficiency was shown for 40 days. In the application to lab-scale bioreactor with five high efficiency bacteria, 88.5% of TPH removal efficiency was shown for 45 days. Based on the results from this study, we confirmed that this mixed Pseudomonas sp. consortium might improve the bioremediation of TPH in contaminated soil, the efficacy can be controlled by improving the nutrients. We also confirmed that the nutrients and oxygen for biodegradation of TPH could contribute on the management and control of applications of these strains for the study of bioremediation of TPH-contaminated soil.

A simple screening method using lignoceullulose biodegradation for selecting effective breeding strains in Agaricus bisporus (리그노셀룰로오스 생물학적 분해를 이용한 간단한 양송이 육종효율 우수 균주 선발)

  • Oh, Youn-Lee;Nam, Youn-Keol;Jang, Kab-Yeul;Kong, Won-Sik;Oh, Min ji;Im, Ji-Hoon
    • Journal of Mushroom
    • /
    • v.15 no.3
    • /
    • pp.134-138
    • /
    • 2017
  • The white button mushroom, Agaricus bisporus, is commercially the fifth most important edible mushroom, accounting for the production of 9,732 tons of mushrooms in Korea in 2015. The genus Agaricus has been known for its potential to degrade lignocellulosic materials. Chemical analyses carried out during the cultivation of A. bisporus indicated that the cellulose, hemicellulose, and lignin fractions were changed preferentially for both vegetative growth and sexual reproduction. We screened A. bisporus strains for effective biodegradation through extracellular enzyme activity using cellulase, xylanase, and ligninolytic enzymes. The enzyme biodegradations were conducted as follows: mycelia of collected strains were incubated in 0.5% CMC-MMP (malt-mops-peptone), 0.5 Xylan-MMP, and 0.5% lignin-MMP media for 14 days. Incubated mycelia were stained with 0.2% trypan blue. Eighteen strains were divided into 8 groups based on different extracellular enzyme activity in MMP media. These strains were then incubated in sterilized compost and compost media for 20 days to identify correlations between mycelial growth in compost media and extracellular enzyme activity. In this study, the coefficient of determination was the highest between mycelial growth in compost media and ligninolytic enzyme activity. It is suggested that comparison with ligninolytic enzyme activity of the tested strains is a simple method of screening for rapid mycelial growth in compost to select good mother strains for the breeding of A. bisporus.

Isolation and Characteristics of Alginate-Degrading Methylobacterium sp. HJM27 (알긴산 분해 Methylobacterium sp. HJM27 균주의 분리 및 특성)

  • Kim, Ok-Ju;Lee, Dong-Geun;Lee, Sung-Mok;Lee, Suck-June;Do, Hyung-Joo;Park, Hye-Jin;Kim, Andre;Lee, Jae-Hwa;Ha, Jong-Myung
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.144-150
    • /
    • 2010
  • This study was aimed to screen bacteria of high alginate-degrading activity, to select the nitrogen source and concentration of NaCl and sodium alginate for the production of alginate-degrading enzyme, and to determine reaction conditions of enzyme. A novel alginate-degrading bacterium was isolated from abalone (Haliotis discus hannai) and named Methylobacterium sp. HJM27 by 16S rDNA sequence analysis. The optimum culture conditions for the production of alginate-degrading enzyme were 1.0% sodium alginate, 0.5% peptone, 0.3% yeast extract, 1.5% NaCl, $25^{\circ}C$ and 48 hours incubation time. The raw enzyme showed the highest activity at $25^{\circ}C$ and pH 9, and produced 1.217 g - reducing sugar per liter in 0.8% (w/v) sodium alginate for 30 minutes. Methylobacterium sp. HJM27 and its alginate-degrading enzyme would be useful for the production of bioenergy and biofunctional oligosaccharides from seaweed.

Characterization of Agarase from an Isolated Marine Bacterium, Simiduia sp. SH-1 (해양성 Simiduia sp. SH-1 균주의 분리 및 한천분해효소의 특성조사)

  • Lee, Sol-Ji;Oh, Soo-Jeong;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1273-1279
    • /
    • 2015
  • Agarase from a novel agar-degrading bacterium isolated from seawater in Namhae at Gyeongsangnamdo province of Korea was characterized. The SH-1 strain was selected from thousands of colonies on Marine agar 2216 media. Almost full 16S rRNA gene sequence of the agarolytic SH-1 strain showed 99% similarity with that of bacteria of Simiduia genus and named as Simiduia sp. SH-1. Agarase production was growth related, and activity was declined from stationary phase. Secreted agarase was prepared from culture media and characterized. It showed maximum activity of 698.6 units/L at pH 7.0 and 30℃ in 20 mM Tris-HCl buffer. Agarase activity decreased as the temperature increased from an optimum of 30℃, with 90% and 75% activity at 40℃ and 50℃, respectively. Agarase was not heat resistant. Slightly lower agarase activity was observed at pH 6.0 than at pH 7.0, without statistical difference, and 80% and 75% activity were observed at pH 5.0 and 8.0, respectively. Neoagarotetraose and neoagarobiose were the main final products of agarose, indicating that it is β-agarase. Simiduia sp. SH-1 and its β-agarase would be useful for the industrial production of neoagarotetraose and neoagarobiose, which have a whitening effect on skin, delaying starch degradation, and inhibiting bacterial growth.

Numerical Taxonomic Studies of Phenol-degrading Bacteria Isolated from Sail (토양에서 분리한 Phenol 분해세균의 수치분류)

  • Lee, Geon;Lee, Sang-Joon;Lee, Jong-Kun
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.624-630
    • /
    • 1991
  • Sixty five phenol degrading bacteria were isolated from soil and identified. Sirnility values calculated on the basis of total 46 morphological, biochemical and physiological characteristics of the isolated strains. 65 isolates were divided into 6 clusters at the 70% simility lavei, The dominant organisms were belonged to Azotobacter, Pseudomonas and Flavobactwium.

  • PDF

Microbial Degradation of Anionic Synthetic Detergents (음이온계 합성세제의 미생물분해)

  • 김영배;이수래
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.3
    • /
    • pp.117-121
    • /
    • 1976
  • A microbial strain capable of degrading ABS (alkyl benzene sulfonate) was isolated and identified as Pseudomonas caryophylli. During the incubation of the isolated bacterium in a synthetic effluent containing 10 ppm of ABS, the extents of removal of ABS, BOD and COD were 40%, 89% and 71%, respectively. The degradability of ABS by pure culture with the isolated strain was twice higher than that of mixed culture with natural microflora. The biodegradability of some commercial detergents in Korea by the isolated organism was as follows: Hiti 46.2%, Kleenup 37.5%, No.1 29%, and OK 27.9%.

  • PDF

Population of Pesticide Resistant Strains in Cultivated Soils of Honam Area and Degradation of Chlorothalonil in soil (호남지역 농경지 토양에 분포된 농약내성균의 밀도와 살균제 Chlorothalonil의 분해)

  • Lee, Sang-Bok;Choi, Yoon-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.185-191
    • /
    • 2001
  • To obtain the basic information for degradation of remaining pesticide accumulated in cultivated soil of Honam area, the resistant bacterial strains were investigated in Chlorothalonil(TPN). Mancozeb, Bentazone, and Butachlor levels of 100, $500{\mu}g\;ml^{-1}$, and degradation of TPN by TPN-resistant bacteria in sterilized soil was studied under TPN levels 0, 10, 50 and $100{\mu}g\;g^{-1}$. A number of resistance strains were decreased with higher at concentration level of pesticide, and were higher in greenhouse than upland or paddy soil. The resistance of bacteria was strong in other of Bentazone> Butachlor> TPN> Mancozeb. The percentage of bacterial strains of resistance for pesticides isolated from the cultivated soil were the highest in Acinetobacter spp. and Corynebacterium spp., and the lowest in Moraxella spp. A number of TPN-resistant strains were the highest at the TPN level of $10{\mu}g\;g^{-1}$, and 5 days after strains inoculation, and were higher in Pseudomonas spp. TD-25 than TC-23 or strains in non-sterilized soil. The degradation of TPN was fast in order of strain TD-25>strain in non-sterilized soil >TC-23.

  • PDF