• Title/Summary/Keyword: 분해균주

Search Result 1,187, Processing Time 0.023 seconds

Isolation and Characterization of Thermophilic Microorganism Producing Starch-hydrolyze Enzyme (한국 토양으로부터 전분가수분해효소를 생산하는 고온성 균주의 선별과 동정)

  • Choi, Wonseok;Bai, Dong-Hoon
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • A thermophilic microorganism, which is able to hydrolyze starch, was isolated from soil and compost in Korea. It was Gram-positive, rod-shaped, catalase positive, nonmotile, glucose and mannitol fermentative, xylose oxidative, and spore forming microorganism. It also has an ability to hydrolyze casein and gelatin. The color of colony was yellowish white. The sequence of 16S rDNA of strain 2719 showed 99.5% sequence homology with the sequence of 16S rDNA of Bacillus thermoglucosidasius. On the basis of biochemical and physiological properties and phylogenetic analysis, the isolated strain was named as Bacillus thermoglucosidasius 2719.

Isolation and Characterization of Tartaric Acid-Degrading Bacteria from Korean Grape Wine Pomace (국산 포도주 주박으로부터 주석산 분해 세균의 분리 및 특성)

  • Kim, Jong-Hyun;Choi, Sang-Hoon;Hong, Young-A;Kim, Dong-Hwan;Lee, Won-Hee;Rhee, Chang-Ho;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.483-490
    • /
    • 2008
  • Several tartaric acid-degrading bacteria were isolated from Korean grape wine pomace after enrichment culture at $30^{\circ}C$ for 10 days in liquid media containing tartaric acid Among them, strains KMBL 5777 and KMBL 5778 exhibited the highest level in the growth and tartaric acid degradability in a medium containing 0.2%(w/v) tartaric acid as a sole carbon source. They were identified as Acetobacter tropicalis based on their morphological and physiological characteristics as well as their 16S rDNA sequences. Blast search of the 16S rDNA sequences revealed that the isolated strains are closest to Acetobacter tropicalis. Homologies of the sequences of KMBL 5777 and KMBL 5778 were 96.0 and 98.9%, respectively with those of A. tropicalis LMG 1663. Both the two bacteria showed higher tartaric acid degradation at $25^{\circ}C$ that those at 20 and $30^{\circ}C$. They could degrade tartaric acid at a wide range of pH between 4.0 and 7.0 with the most rapid degradability at pH 7.0. However, when the bacteria were grown for 8 days, the same level of tartaric acid degradation was observed at pH 4.0, 5.0, 6.0 and 7.0, which was 90.0% of degradation of the acid.

PAHs Degrading Bacterium Separation and Identification for Biological Treatment (PAHs의 생물학적 처리를 위한 분해 미생물 분리 동정)

  • Kim, Man;Choi, Kyoung-Kyoon;Go, Myong-Jin;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.70-77
    • /
    • 2007
  • Pseudomonas sp. KM1 was separated from soil contaminated by petroleum and identified. The isolated strain is Gram-positive, rod-shaped and immotile. In batch culture, the optimum cultivation temperature and pH was $35^{\circ}C$ and 7, respectively. Biodegradation of PAHs experiment with soil slurry system was performed using Pseudomonas sp. KM1. Pseudomonas sp. KM1 could degrade 7 PAHs including naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, pyrene, and fluoranthene. These mixed PAHs was easily degraded within one day except fluoranthene, which was degraded much slowly, taking several days by this isolated bacteria. Pseudomonas sp. KM1 is good candidate for bioremediation of PAHs contaminated soils. Biodegradation rates of naphthalene, phenanthrene and pyrene in soils were different at each soil, and the rates were decreased as sorption capacity increased.

Biodegradation of Aniline by Pseudomonas Rhodesiae isolated from River Water (강물에서 분리한 Pseudomonas rhodesiae의 아닐린 분해)

  • Kim, Hyun-Ju;Kim, Jin-Cheol;Kim, Heung-Tae;Choi, Gyung-Ja;Choi, Do-Il;Kim, Hong-Gi;Cho, Kwang-Yun
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.2
    • /
    • pp.74-78
    • /
    • 2001
  • Two Bacterial strains 1-C and 51-C capable of utilizing aniline as a sole source of carbon and energy were isolated from river waters. Both strains were identified as Pseudomonas rhodesiae based on their physiological and biochemical characteristics and 16S rRNA gene sequence. The strains were able to grow on the mineral salt media containing aniline at concentrations up to 6,000 ${\mu}g/mL$. Pseudomonas rhodesiae 51-C completely degraded aniline in a mineral salt medium containing 300 ${\mu}g/mL$ of aniline as a sole carbon and energy source within 16 hours. The optimum pH and temperature for its growth and aniline degradation were 7.0 and $30^{\circ}C{\sim}35^{\circ}C$, respectively. This is the first report of aniline degradation by P. rhodesiae strains.

  • PDF

Study on the Proteolytic Activities of Pathogenic Vibrio sp. (비브리오 속의 단백질 분해능에 관한 연구)

  • 양지영;한종흔;이재우;김수광;차재호
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.2
    • /
    • pp.173-175
    • /
    • 2000
  • Nine strains of pathogenic Vibrio sp. of clinical and environmental origin were examined for the degradation of gelatin, casein and hemolysin which is important to the virulence of this bacterium. Culture filtrates of all nine strains of Vibrio exhibited proteolytic activities. Especially, four strains of V. parahaemolyticus and one V. alginolyticus showed strong gelatin-degrading activity. In terms of hemolytic activity, three V. parahaemolyticus and V. mimicus showed strong $\beta$-hemolysis whereas those of strains of V. alginolyticus, V. fluvialis, V. vulnificus examined lacked this activity.

  • PDF

Growth and Biodegradability of Facultative Psychrophilic SDBS-degrading Pseudomonas spp. (Facultative Psychrophilic Pseudomonas spp.의 생장 및 SDBS분해능에 대하여)

  • 이혜주
    • Korean Journal of Microbiology
    • /
    • v.19 no.4
    • /
    • pp.179-185
    • /
    • 1981
  • Facultative psychrophilic bacteria utilizing SDBS (Sodium Dodecyl Benzene Sulfonate) as their carbon source were isolated in the Han River. All of these isolated faculatative psychrophilic bacteria were identified as Pseudomonas spp. The growth and biodegradation rates of Ps.fluorescens LP6, Ps. fluorescens LS6 and Ps. putida LC1 among 8 identified facultative psychrophilic bacteria were investigated with spectrophotometer. The specific growth rates of these three facultative psychrophilic bacteria at $25^{\circ}C$ were higher than those at any other temperatures. However, the final cell yields were the highest for cells grown at $5^{\circ}C$. The biodegradation of SDBS by Ps. fluorescens LP 6 was started at the stationary phase of cells. The biodegradation rate of SDBS by Ps. fluorescens LP6 was the highest when the cells were cultured at $25^{\circ}C$.

  • PDF

Isolation and Characterization of Bacillus cereus Secreting Proteases from Korean Soybean Paste (된장에 존재하는 Bacillus cereus의 분리 및 균주가 분비하는 단백질 가수분해효소의 특성에 관한 연구)

  • 김성조;윤주희;이명숙;김한복
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.136-141
    • /
    • 1997
  • To elucidate whether there are bacteria excreting proteases in Korean traditional fermented food, soybean paste (Doen-Jang) or not, well growing bacteria with halos were isolated on the qkim milk agar media. The strains were identified as Bacillu, cereus JH-1, B. cereus SH-5, B. cereus SH-7 through various physiological and biochemical tests, VlTEK system, and MIDI system. The extracellular proteases of the strain JH-1, and SH-5, were optimal at pH 9, 40^{\circ}C.$, and the protease of strain SH-7 at pH 8 and 50^{\circ}C.$. Also hemolysis activities of the three strains were observed on the hlood agar media.

  • PDF

Characteristics of Fermented Brown-Rice Suspension Prepared from Leuconostoc mesenteroides KC51 Strain (가수분해도가 상이한 현미 가수분해물에서 Leuconostoc mesenteroides KC51 균주 발효물의 특성)

  • In, Man-Jin;Oh, Nam-Soon;Kim, Dong-Chung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.8
    • /
    • pp.1118-1123
    • /
    • 2009
  • Brown-rice hydrolyzates with different degrees of hydrolysis (DH) were fermented using Leuconostoc mesenteroides (Ln. mesenteroides) KC51 strain at $30^{\circ}C$ for 15 hr. Changes in pH, titratable acidity, viable cell counts and phytate degradation during fermentation were investigated. The acid production was increased with increasing DH of brown-rice hydrolyzate. At high DH (48.2%), the pH and titratable acidity reached to pH 3.41 and 0.82% after 15 hr fermentation, respectively. Regardless of DH of brown-rice, however, the viable cell population of Ln. mesenteroides KC51 was slightly increased to $4.0\sim7.2{\times}10^8$ CFU/g during the 6 hr of cultivation. The phytate content in brown-rice hydrolyzates decreased with increasing DH of brown-rice hydrolyzates. The level of phytate was reduced to around 50% of initial concentration at high DH condition. When the fermented brown-rice was kept at $4^{\circ}C$, pH, titratable acidity and number of viable cells were nearly maintained for 14 days.

Biodegradation of Pyrene in Marine Environment (해양환경에서 Pyrene의 생분해)

  • 황순석;송홍규
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 1999
  • The biodegradation of recalcitrant polycyclic aromatic hydrocarbon, pyrene was investigated in microcosm simulating the beach sand and seawater. The natural biodegradation rates of pyrene were between 30-2,200 ng/g(ml)/day in beach sand and seawater when the pyrenc loading rates were 100- 1,000 ppm at 5-$20^{\circ}C$. The effects of the inoculum size, pyrene concentralion, incubation temperature and surfactant addition were investigated in fertilized (Inipol EAP 22) samples. Generally the biodegradation in beach sand was higher than that in seawater. A mixed inoculum (Pseudomonus, Acinetobacter, Moruxella) showed the 3,120 nglglday of biodegradation rate in beach sand with 200 ppm pyrene, which was 7.8 times higher than the natural biodegradation rate. The highest transformation rate, 4,860 ng/g/day was obtained in the bioaugmented beach sand (1,000 ppm pyrene). The glucose and surfactant addition to enhance the removal have negatively influenced on the biodegradation of pyrene. In case ol surfactants, CMC (critical micell concentration) might bc the control factor for the biodegradation.

  • PDF

Optimal Culture Conditions and Food Waste Decomposition Effects of Mixed Strains Separated from Traditional Fermented Food and Soils (전통발효식품과 토양으로부터 분리된 혼합균주의 최적생육조건 및 음식물쓰레기 분해 효과)

  • Kim, Min-Sun;Kim, Hee-Jeong;Jung, Eun-Seon;Park, Ju-Yong;Chae, Jong-Chan;Hwang, Kwontack;Lee, Seung-Je
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.285-292
    • /
    • 2018
  • In this study, for the purpose of decomposing food waste, the strain was screened from traditional fermented food and soils. The enzyme activity (protease, amylase, cellulase, lipase) experiment was carried out using the paper disc method in 212 strains isolated from 5% NaCl media. Among them, only the strains having enzyme activity of more than 2 (soil) or more than 4 (traditional fermented food) with the halozone of enzyme activity of 15 mm or more were selected first, and microorganism identification through 16S rRNA sequencing was performed. Finally, were identified such as Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus licheniformis, Bacillus aquimaris, Bacillus megaterium, Bacillus koreensis, Bacillus stratoshericus, Bacillus aryabhattai, Bacillus safensis, Marinobacter hydrocarbonoclasticus. 11 species of mixed strains were confirmed that the culture time was 24 hours, the incubation temperature was $30^{\circ}C$ and the optimum pH was 7.0. In order to confirm the degree of decomposition of standard food wastes (100 g) by treating 11 kinds of mixed strains (25%), solid content of more than $2000{\mu}m$ was determined to be 103 g for the sterilized water group and 18 g for the mixed strains group. And the rest was decomposed to a size of less than $2000{\mu}m$.