• Title/Summary/Keyword: 분할 모델

Search Result 2,305, Processing Time 0.03 seconds

Three-dimensional Boundary Segmentation using Multiresolution Deformable Model (다해상도 변형 모델을 이용한 3차원 경계분할)

  • 박주영;김명희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.592-594
    • /
    • 2000
  • 변형모델(deformable model)은 볼륨의료영상(volumetric medical image)으로부터 복잡한 인체기관의 3차원적 경계를 분할해내기 위해 효과적인 방법을 제공한다. 그러나, 기존 변형모델은 초기와 의존성, 오목한 경계(concavity) 분할의 비적합성, 그리고 모델내 요소간 자체교차(self-intersection)의 제한점을 가지고 있었다. 본 연구에서는 이러한 제한점을 극복하고, 오목한 구조를 포함하는 복잡한 인체기관의 경계를 분할하기에 적합한 새로운 변형모델을 제안하였다. 제안한 변형모델은 볼륨영상 피라미드(pyramid)를 기반으로 다해상도(multiresolution)의 모델 정제화(refinement)를 수행한다. 다해상도 모델 정제화는 전역적 시셈플링(global resampling) 및 지역적 리샘플링(local resampling)를 통하여 저해상도의 모델로부터 점차 고해상도의 모델로 이동하면서 객체의 경계를 계층적으로 분할해가는 방법이다. 다해상도 모델에 의한 계층적 경계 분할은 초기화 조건에의 의존성을 극복할 수 있게할 뿐 아니라, 빠른 속도로 원하는 객체의 경계에 수렴할 수 있게 한다. 또한 지역적 리샘플링은 모델 구성요소의 정규화를 수행함으로써 객체의 오목한 부분을 성공적으로 분할할 수 있게 한다. 그리고, 제안 모델은 기존 변형모델에서 포함하는 내부 힘(internal force)과 외부 힘(external force)외에 자체교차방지 힘(non-self-intersection force)을 추가함으로서 효과적으로 모델내의 자체교차를 방지할 수 있게 하였다.

  • PDF

Emotional Layer Model (감성 계층 모델)

  • 고성범
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.133-137
    • /
    • 1999
  • 테스트의 종적 분할 모델은 적응성, 강건성, 속응성의 관점에서 장점을 갖는다. 그러나 종적 분할 모델을 실제로 구현하기 위해서는 환경에 대한 적자가 시스템 운영을 장악해야 한다는 전제 조건이 충족되어야 한다. Brooks의 Subsumption 모델은 이러한 조건을 충족시키기에 충분하지만 subsumption 제약 자체가 일반적인 도메인에 적용되기에는 지나치게 엄격한 점이 있다. 본 논문에서는 이에 대한 한가지 대안으로 감성 계층을 이용한 방안을 제시한다. 감성 계층을 사용하는 경우 시스템을 구성하는 모듈 상호간에 있어서 보다 단순한 구조와 다양한 효과를 갖는 "관계 설정"이 가능해진다. 본 논문에서는 관계 설정에 대한 일한 유연성이 일반적인 도메인에 대한 종적 분할 모델의 적용 능력을 개선시킬 수 있음을 보인다.수 있음을 보인다.

  • PDF

A design of teaching units for experiencing mathematising of secondary pre-service teachers: Inquiry into number partition models (예비중등교사의 수학화 경험을 위한 교수단원의 설계: 수 분할 모델의 탐구)

  • Kim, Jin-Hwan;Park, Kyo-Sik
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.1
    • /
    • pp.57-76
    • /
    • 2006
  • In this paper, we generalized number partion problems in elementary situations to number partition models that provide some mathematical problem situations for experiencing mathematising of secondary pre-service teachers. We designed substantial teaching units entitled 'the inquiry intof number partition models' through 4 steps: (1) key problems, (2) integration from the view of partition, (3) defining partition (4) a real practice of inquiry into models. This teaching unit can contribute to secondary pre-service teacher education as follows: first, This teaching unit have pre-service teachers experience mathemtising. second, This teaching unit have pre-service teachers see the connection between school mathematics and academic mathematics. third, This teaching unit have pre-service teachers foster their mathematical creativity.

  • PDF

Segmentation and Compression Techniques for 3D Animation Models (삼차원 애니메이션 모델의 분할 및 부호화 방법)

  • 안정환;임동근;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.353-356
    • /
    • 2000
  • 최근 복잡한 실제 사물을 가상 공간상에 표현하기 위해 삼차원 모델을 많이 이용하고 있다. 기존의 삼차원 데이터 처리는 주로 정지 모델에 대해 기하학 정보와 위상학 정보를 표현하거나 다중 해상도(Level of Details, LOD)로 나타내는데 역점을 두었다. 그러나 네트웍을 통한 가상 공간에서 삼차원 애니메이션에 대한 응용이 점차 늘어남에 따라 이러한 데이터를 효율적으로 압축하여 전송하거나 저장할 필요가 생겼다 본 논문에서는 삼차원 애니메이션 모델의 공간적 또는 시간적 상관 관계를 이용하여 삼차원 모델 정보를 부호화하는 방법을 제안한다. 먼저 주어진 모델의 움직임을 분석하고 이를 (r,θ,ø)의 구 좌표계로 변환한 후 (θ,ø)의 분포에 따라 모델을 분할(Segmentation)한다. 그리고 움직임 벡터는 Affine 변환을 이용하여 삼차원 공간에서의 움직임을 정의한다. Key프레임에 해당하는 정지 모델의 기하학 정보와 위상학 정보를 압축하고, LOD 기술을 적용하여 손실 혹은 무손실로 부호화하여 전송한다. 또한 Key프레임 사이의 화면에서는 선형 또는 비선형 보간법으로 각 분할 부분을 복원하고, 이를 조합하여 전체적인 삼차원 모델을 복원한다.

  • PDF

3D mesh compression using model segmentation and de-duplications (모델 분할 및 중복성 제거 기법을 이용한 3차원 메쉬 압축 기술)

  • Kim, Sungjei;Jeong, Jinwoo;Yoon, Ju Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.190-191
    • /
    • 2020
  • 본 논문은 모델 분할 기법과 중복성 제거 기법을 통한 대용량 3차원 메쉬 모델의 고속 압축 기술에 관한 내용이다. 대용량 3차원 메쉬 모델의 비실시간 압축은 실시간 스트리밍 응용 시나리오에서 제약점으로 작용하고 있고, 본 논문에서는 인코딩 시간을 줄이기 위해 경량 메쉬 분할 방법을 통해 대용량 메쉬를 여러 개의 작은 메쉬로 분할하고, 각각의 분할된 메쉬를 병렬적으로 인코딩하여 처리 속도를 개선하였다. 또한, 메쉬 모델 내의 같은 기하학적 정보를 가진 중복된 정점들이 존재할 수 있으며, 중복된 정보를 제거하고 제거된 정점과 삼각형 표면 간의 연결 정보를 갱신하는 과정을 통해 메쉬 모델의 기하학적 정보를 유지하면서 압축 성능을 확보하였다.

  • PDF

Multi-Decoder DNN Model for High Accuracy Segmentation using Pseudo Depth-Map and Efficient Training Strategy (의사 깊이맵을 이용한 다중 디코더 기반의 고정밀 분할 딥러닝 모델 개발 및 효율적인 학습 전략)

  • Yu-Jin Kim;Dongyoung Kim;Jeong-Gun Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.727-730
    • /
    • 2024
  • 최근 딥러닝 기술이 급속히 발전하며 현대 사회의 다양한 응용분야에서 빠르게 적용되고 있다. 특히 영상 기반의 딥러닝 기술은 자연어 처리와 함께 인공지능 기술의 핵심 연구 분야로 많은 연구가 진행되고 있다. 논문에서는 최근 많은 연구가 진행되고 있는 영상의 의미적 분할 (Semantic Segmentation) 성능을 향상하기 위한 연구를 진행한다. 특히 모델에서 고정밀의 의미적 분할을 수행할 수 있도록 추가적인 정보로써 의사 깊이맵 (Pseudo Depth-Map)을 활용하는 방법을 제안하였다. 더불어, 의사 깊이맵을 모델 상에서 효과적으로 학습시키기 위하여 다중 디코더 모델과 학습 효율을 높이는 학습 스케줄링 전략을 제안한다. 의사 깊이맵과 다중 디코더 모델 기반의 제안 모델은 기존 의미적 분할 모델과 비교하여 iIoU 기준 2%의 성능 향상을 보였다.

Representation of Three-dimensional Polygonal Mesh Models Using Hierarchical Partitioning and View dependent Progressive Transmission (계층적 분할을 이용한 삼차원 다각형 메쉬 모델의 표현 및 인간 시점에 따른 점진적 전송 방법)

  • 김성열;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.132-140
    • /
    • 2003
  • In this paper, we propose a new scheme for view-dependent transmission of three-dimensional (3-D) polygonal mesh models with hierarchial partitioning. In order to make a view-dependent representation of 3-D mesh models, we combine sequential and progressive mesh transmission techniques. By setting higher priorities to visible parts than invisible parts, we can obtain good qualify of 3-D models in a limited transmission bandwidth. In this paper, we use a multi -layer representation of 3-D mesh models based on hierarchical partitioning. After representing the 3-D mesh model in a hierarchical tree, we determine resolutions of partitioned submeshes in the last level. Then, we send 3-D model data by view-dependent selection using mesh merging and mesh splitting operations. By the partitioned mesh merging operation, we can reduce the joint boundary information coded redundantly in the partitioned submeshes. We may transmit additional mesh information adaptively through the mesh spritting operation.

An Efficient Text Detection Model using Bidirectional Feature Fusion (양방향 특징 결합을 이용한 효율적 문자 탐지 모델)

  • Lim, Seong-Taek;Choi, Hoeryeon;Lee, Hong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.67-68
    • /
    • 2021
  • 기존 객체탐지는 경계 상자 회귀방식을 적용하였지만, 문자는 왜곡과 변형이 심한 특성을 가진 객체로 U-net 구조의 이미지 분할 방식을 사용하는 경우가 많다. 따라서 최근 문자 탐지는 통계적 모델에 비해 높은 정확도를 보이는 심층 신경망 기반의 모델 연구가 많이 진행되고 있다. 본 연구에서는 이미지 분할을 통한 양방향 특징 결합 기법을 사용한 문자 탐지 모델을 제안한다. 이미지 분할 방식은 메모리의 효율이 떨어지기 때문에 이를 극복하고자 특징 추출 단계에서 경량화된 네트워크를 적용하였다. 또한, 객체 탐지에서 큰 성과를 보인 양방향 특징 결합 모듈을 U-net 구조에 추가하여 추출된 특징이 효과적으로 결합 되는 결과를 얻었다. 제안하는 모델의 문자 탐지 성능은 합성 문자 데이터셋을 이용한 실험을 통해 기존의 U-net 구조의 이미지 분할 방식보다 향상되었음을 확인하였다.

  • PDF

Intra-Sentence Segmentation using Maximum Entropy Model for Efficient Parsing of English Sentences (효율적인 영어 구문 분석을 위한 최대 엔트로피 모델에 의한 문장 분할)

  • Kim Sung-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.385-395
    • /
    • 2005
  • Long sentence analysis has been a critical problem in machine translation because of high complexity. The methods of intra-sentence segmentation have been proposed to reduce parsing complexity. This paper presents the intra-sentence segmentation method based on maximum entropy probability model to increase the coverage and accuracy of the segmentation. We construct the rules for choosing candidate segmentation positions by a teaming method using the lexical context of the words tagged as segmentation position. We also generate the model that gives probability value to each candidate segmentation positions. The lexical contexts are extracted from the corpus tagged with segmentation positions and are incorporated into the probability model. We construct training data using the sentences from Wall Street Journal and experiment the intra-sentence segmentation on the sentences from four different domains. The experiments show about $88\%$ accuracy and about $98\%$ coverage of the segmentation. Also, the proposed method results in parsing efficiency improvement by 4.8 times in speed and 3.6 times in space.

The Comparison of Segmentation Performance between SegFormer and U-Net on Railway Components (SegFormer 및 U-Net의 철도 구성요소 객체 분할 성능 비교)

  • Jaehyun Lee;Changjoon Park;Namjung Kim;Junhwi Park;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.347-348
    • /
    • 2024
  • 본 논문에서는 철도 구성요소 모니터링을 위한 효율적인 객체 분할 기법으로 사전학습된 SegFormer 모델의 적용을 제안하고, 객체 분할을 위해 보편적으로 사용되는 U-Net 모델과의 성능 비교 분석을 진행하였다. 철도의 주요 구성요소인 선로, 침목, 고정 장치, 배경을 분할할 수 있도록 라벨링된 데이터셋을 학습에 사용하였다. SegFormer 모델이 대조군인 U-Net보다 성능이 Jaccard Score 기준 5.29% 향상됨에 따라 Vision Transformer 기반의 모델이 기존 CNN 기반 모델의 이미지의 전역적인 문맥을 파악하기 상대적으로 어렵다는 한계를 극복하고, 철도 구성요소 객체 분할에 더욱 효율적인 모델임을 확인한다.

  • PDF