변형모델(deformable model)은 볼륨의료영상(volumetric medical image)으로부터 복잡한 인체기관의 3차원적 경계를 분할해내기 위해 효과적인 방법을 제공한다. 그러나, 기존 변형모델은 초기와 의존성, 오목한 경계(concavity) 분할의 비적합성, 그리고 모델내 요소간 자체교차(self-intersection)의 제한점을 가지고 있었다. 본 연구에서는 이러한 제한점을 극복하고, 오목한 구조를 포함하는 복잡한 인체기관의 경계를 분할하기에 적합한 새로운 변형모델을 제안하였다. 제안한 변형모델은 볼륨영상 피라미드(pyramid)를 기반으로 다해상도(multiresolution)의 모델 정제화(refinement)를 수행한다. 다해상도 모델 정제화는 전역적 시셈플링(global resampling) 및 지역적 리샘플링(local resampling)를 통하여 저해상도의 모델로부터 점차 고해상도의 모델로 이동하면서 객체의 경계를 계층적으로 분할해가는 방법이다. 다해상도 모델에 의한 계층적 경계 분할은 초기화 조건에의 의존성을 극복할 수 있게할 뿐 아니라, 빠른 속도로 원하는 객체의 경계에 수렴할 수 있게 한다. 또한 지역적 리샘플링은 모델 구성요소의 정규화를 수행함으로써 객체의 오목한 부분을 성공적으로 분할할 수 있게 한다. 그리고, 제안 모델은 기존 변형모델에서 포함하는 내부 힘(internal force)과 외부 힘(external force)외에 자체교차방지 힘(non-self-intersection force)을 추가함으로서 효과적으로 모델내의 자체교차를 방지할 수 있게 하였다.
본 논문에서는 삼차원 모델을 효율적으로 전송하기 위해, 삼차원 메쉬 모델을 계층적으로 표현하고 보는 사람의 시점에 따라 메쉬 모델의 해상도를 다르게 하여 전송하는 방법을 제안한다. 제안한 방법은 점진적 메쉬 전송과 순차적 메쉬 전송이 결합된 형태로 보는 사람의 현재 시점을 고려하여 삼차원 모델을 전송하는 것이다. 보는 사람의 시각 위치에 따라 전송할 때, 보이지 않는 부분보다 보이는 부분을 먼저 전송하여 제한된 전송대역 안에서 삼차원 모델의 품질을 최적화 할 수 있다. 먼저 주어진 삼차원 메쉬 모델을 계층적으로 메쉬 분할하고 최하위 레벨의 분할메쉬에 대해 다중계층을 구성한다. 메쉬분할을 위한 시작꼭지점은 K-means 알고리즘을 사용하여 선택하기 때문에, 메쉬분할 과정에서 균등한 분할메쉬를 얻을 수 있다. 보는 사람의 시점에 따라 최하위 레벨의 각 분할메쉬에 대해서 해상도를 계산한 후, 병합과 분리과정을 통해 삼차원 메쉬 모델을 전송한다. 분할메쉬 병합과정은 삼차원 메쉬의 정적시각 전송에 이용피고, 메쉬분할로 생기는 공통 경계 정보를 줄일 수 있다. 분할메쉬 분리과정은 삼차원 메쉬의 동적시각 전송에 이용되고, 보는 사람의 시점에 따라 새롭게 보이는 분할메쉬에 대해 추가적인 정보를 유동적으로 전송한다.
이 연구에서는 예비중등교사들의 수학화 학습을 위해 분할모델과 일반화된 피보나치 수열 사이의 관계를 탐구하는 교수단원을 설계한다. 이 교수단원에서는 먼저 예비중등교사들이 조직해야 할 현상을 탐구문제의 형태로 제공한다. 그들은 이 탐구문제를 해결하면서, 그것을 조직하는 본질 즉, 분할의 수에 대한 패턴을 찾게 된다. 이 과정에서 점차 커지는 분할될 수의 집합에 따라 분할모델의 유형도 다양해진다. 이러한 분할모델에 대한 분할의 수를 구하고, 이 수들 사이의 패턴을 찾아 공식을 만들고, 이 공식들이 일반화된 피보나치 수열과 관계가 있음을 찾는다. 분할모델과 피보나치 수열 사이의 이러한 관계는 이전에 알려지지 않은 소재인 만큼, 그것은 예비중등교사들로 하여금 수학화를 가상적으로 연습하게 하는 것이 아니라, 실제처럼 연습할 수 있게 된다.
한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
/
pp.277-280
/
2001
본 연구에서는 연속음성인식 시스템의 성능개선을 위한 기초 연구로서 음소결정트리 상태분할과 한국어 음성학적 지식을 이용하여 문맥의존 음향모델의 작성방법을 검토하고. 한국어 연속음성인식에 적용을 소개한다. 음소결정트리 상태분할 알고리즘은 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어 집합에 따라 2진 트리로 SSS(Successive State Splitting) 알고리즘에 의해 상태분할 하는 방법으로서 상태분할 후 각 상태를 네트워크로 연결한 구조를 HM-Net(Hidden Markow Network)이라 하며 문맥의존 음향모델로 표현된다. 작성한 문맥의존 음향모델의 유효성을 확인하기 위해 본 연구실의 항공편 예약 문장(YNU200)에 대해 연속음성인식 실험을 수행하였다. 인식실험 결과, 문맥의존 음향모델에 대한 화자독립 연속음성인식률이 기존의 단일 HMM 모델보다 평균적으로 1-pass의 경우 9.9%, 2-pass의 경우 4.1% 향상된 인식률을 보였다. 따라서 문맥의존 음향모델을 작성하는데 음소결정트리 상태분할과 한국어 음성학적 지식이 유효함을 확인하였다.
Park, Young-Ho;Ham, Myung-Kyu;You, Kwang-Bock;Bae, Myung-Jin
한국음향학회지
/
제18권7호
/
pp.80-84
/
1999
본 논문에서는, 협대역 음성신호의 정보로부터 광대역 음성신호를 예측하는 분할모델 분석알고리즘을 제안한다. 분할모델 분석알고리즘에서는 10차 LPC모델을 5개의 종속적으로 연결된 2차 모델로 분리하였다. 복잡성을 감소한 2차계수모델의 이용은 모델 파라미터와 LPC모델의 모든 극점사이의 복잡한 비선형 관계를 단순화시킨다. 모델 파라미터와 동일한 아날로그 극점사이의 관계를 본 논문에서 증명하였고, 각각의 2차 계수의 모델에 적용하였다. 그로 인해 광대역 음성신호는 단순한 샘플링 변경에 의해서 얻어졌다.
본 연구에서는 예비중등교사의 수학화 경험을 위해, 초보적인 상황의 문제를 기반으로 수를 분할하는 문제로 일반화하여, 수의 분할에 관한 일련의 문제 및 상황을 제공하는데 적절한 수 분할 모델을 고안하고, 그것을 탐구하는 교수단원 <분할 모델의 탐구>를 Wittmann의 교수단원 사상에 따라 설계한다. 이 연구에서 설계하는 <분할 모델의 탐구>는 (1) 실마리 문제 (2) 분할 관점에서의 통합 (3) 분할 모델의 정의 (4) 분할 모델을 활용한 탐구의 네 단계로 이루어진다. 이 교수단원이 예비중등수학 교사교육에 기여할 수 있는 바는 다음과 같다. 첫째, 예비교사들로 하여금 수학화를 경험할 수 있게 해준다. 둘째, 예비교사들로 하여금 학교수학과 학문수학의 연결을 볼 수 있게 한다. 셋째, 에비교사들의 수학적 창의력을 기르는데 도움이 될 수 있다.
영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역분할이 필요하다. 통계적 모델을 이용한 영상의 영역분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 글러스터링 알고리즘을 통한 영상의 영역분할 시 노이즈문제를 이웃한 픽셀들의 멤버쉽 값을 평균화합으로써 해결하는 방법을 제안하였다.
영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역 분할이 필요하다. 통계적 모델을 이용한 영상의 영역 분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역 분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 클러스터링 알고리즘을 통한 영상의 영역 분할 시 노이즈 문제를 이웃한 픽셀들의 멤버쉽 값을 평균화함으로써 해결하는 방법을 제안하였다.
영상분할이란 영상 내에 존재하는 객체를 배경에서 분리해내는 것을 말한다. Active Contour 모델은 객체를 영상에서 분리하는 gradient 기반의 영상분할 방식이다. 전통적인 의미의 Active Contour 모델에서 사용한 gradient 함수 기반의 영상분할은 잡영이 많고 객체와 배경간 뚜렷한 경계가 없는 영상에서는 그 한계를 보이고 있다. 이에 본 논문에서는 이러한 Active Contour 모델의 단점을 극복하기 위한 방법으로 영상 내의 진화곡선에 의존하는 에너지 함수인 Mumford-Shah Functional을 이용한 방법을 제안한다. 이 방법은 영상 내의 Active Contour를 진화시켜 Mumford-Shah 함수의 에너지를 최소화시키는 Level Set 함수를 찾고 Level Set 함수에 의해 얻어진 부분영상에서 히스토그램을 이용한 임계치(thresholding) 방식을 사용하는 보다 효과적인 객체추출 모델이다.
긴 문장 분석은 높은 분석 복잡도로 인해 기계 번역에서 매우 어려운 문제이다. 구문 분석의 복잡도를 줄이기 위하여 문장 분할 방법이 제안되었으며 본 논문에서는 문장 분할의 적용률과 정확도를 높이기 위한 최대 엔트로피 확률 모델 기반의 문장 분할 방법을 제시한다. 분할 위치의 어휘 문맥적 특징을 추출하여 후보 분할 위치를 선정하는 규칙을 학습을 통해 자동적으로 획득하고 각 후보 분할 위치에 분할 확률 값을 제공하는 확률 모델을 생성한다. 어휘 문맥은 문장 분할 위치가 표시된 말뭉치로부터 추출되며 최대 엔트로피 원리에 기반하여 확률 모델에 결합된다. Wall Street Journal의 문장을 추출하여 학습 데이타를 생성하는 말뭉치를 구축하고 네 개의 서로 다른 영역으로부터 문장을 추출하여 문장 분할 실험을 하였다. 실험을 통해 약 $88\%$의 문장 분할의 정확도와 약 $98\%$의 적용률을 보였다. 또한 문장 분할이 효율적인 파싱에 기여하는 정도를 측정하여 분석 시간 면에서 약 4.8배, 공간 면에서 약 3.6배의 분석 효율이 향상되었음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.