• Title/Summary/Keyword: 분지관모델

Search Result 10, Processing Time 0.028 seconds

Branching Pattern and Effective Leaf Area of Spreading Herbs, The Crabgrass and The Korean Lawn (포복형 초본(바랭이와 잔디)의 분지형과 유효 엽면적)

  • 장남기;홍정림
    • Asian Journal of Turfgrass Science
    • /
    • v.7 no.2_3
    • /
    • pp.95-101
    • /
    • 1993
  • 1992년 6월부터 1993년 9월 동안에 서울에서 이루어진 바랭이와 잔디의 분지형(branching pattern)과 유효엽면적(effective leaf area)에 대한 정량적 연구 결과는 다음과 같다. 1. 분지 끝 지점의 2차원적인 위치는 수학적 방식을 이용한 이론적 모델에 의해 분지사이의 각과 분지 길이들이 상대적인 비를 이용하여 계산할 수 있다. 2. 분지각과 분지길이의 상대적인 비는 바랭이나 잔디의 개체와 군락의 전체적인 구조를 효과적으로 분석하는데 있어 매우 적절하게 사용될 수 있다. 3. 시간에 따라 변화되는 분지형을 명확히 분석하기 위해 positive feedback theory를 성장 분석 모델로 적용하였다. 4. 분지의 마디 배열은 봄에서 여름에 이르는 생장 기간동안에 변화됨을 나타내었다. 주지(mother branch)와 복지(daughter branch)사이의 각은 적정치에 수렴하는 양상을 보였으며 그 평균값은 바랭이가 50도, 잔디가 59도임을 알 수 있었다. 5. 야외에서 관찰된 실험적 측정치아 모식적 구성을 통해서 최대 물질 생산과 연관된 햇빛 흡수와 수용의 극대화를 위한 분지형과 최대 유효엽면적의 상관 관계를 분석하였다. 6. 따라서 수학적 모식을 이용한 분지형 분석은 실험적 측정치와 잘 일치하며, 이런 수관형의 형성은 유전적 요소와 환경적 요소에 의해 영향을 받을 뿐만 아니라 식물의 적응적 중요성을 지니는 유효잎면적, 관수용 및 광합성과 물질생산의 극대화를 분석하는데도 유효하게 쓰일 수 있다.

  • PDF

Three-Dimensional Flow Visualization of Pulsatile Flow in a Branching Model using the PIV System (PIV를 이용한 분지관모델내 3차원 맥동유동의 가시화)

  • Sung, Sun-Kyung;Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.748-753
    • /
    • 2001
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCO camera for the image processing at several cross section. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

Development of Packed Bed Lung Model for the Deposition Studies of Fire Smoke (흡입연기의 침착 실험을 위한 충전층 폐모델 개발에 관한 연구)

  • Goo, Jae-Hark
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • Adverse health effects of inhaled smokes are associated with the amount of the particles deposited in human lung. Lung model is needed to simulate smoke deposition because of the hardness of the in vivo deposition experiment. However, it is hard to realize the successively decreasing bifurcations in the model. In this work, an experimental lung model was developed to simulate the smoke deposition in the lung. Instead of bifurcating airways, the lung model was made of packed beds of which size decreased downwards. The experimental results using this model showed good agreements with existing results for real lung in the deposition characteristics. The model could be applied to the studies of health risk assessment of the inhaled smoke particles generated by fire.

Visualization of Three-Dimensional Pulsatile Flow in a Branching Model using the High-Resolution PIV System (고해상 PIV시스템을 이용한 분지관내3차원 맥동유동 가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Choi, Jin-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.765-768
    • /
    • 2003
  • The objective of the present study was to visualize the pulsatile flow field in a branching model by using the high-resolution PIV system. A bifurcated flow system was built for the experiments in the pulsatile flow. Harvard pulsatile pump was used to generate the pulsatile velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow fields. Two consecutive particle images at several cross sections of the flow filed were captured by the CCD cameras ($1K{\ast}1K$ and $640{\ast}480$). The results after the image processing clearly showed the recirculation zones and the formation of the paired secondary flows from the distal to the apex in the bifurcated model. The results also indicated that the flow velocities in the inner wall moved faster than those in the outer wall due to the inertial force effects and the helical motions generated in the branch flows as the flow proceeded toward the outer wall. While the PIV images from the $1K{\ast}1K$ camera were closer to the simulation results thantheimagesfromthe640${\ast}$480camera,bothresultsofthePIVexperimentsusingthetwocamerasgenerallyagreed quitewellwiththeresultsfromthenumericalsimulation.

  • PDF

Development of a numerical flow model for the multi-cylinder engine intake system (다기통 엔진 흡기시스템의 유동해석 모델개발)

  • Song, Jae-Won;Seong, Nak-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1921-1930
    • /
    • 1996
  • To design an optimum engine intake system, a flow model for the intake manifold was developed by the finite difference method. The flow in the intake manifold was one-dimensional, and the finite difference equations were derived from governing equations of flow, continuity, momentum and energy. The thermodynamic properties of the cylinder were found by the first law of thermodynamics, and the boundary conditions were formulated using steady flow model. By comparing the calculated results with experimental data, the appropriate boundary conditions and convergence limits for the flow model were established. From this model, the optimum manifold lengths at different engine operating conditions were investigated. The optimum manifold length became shorter when the engine speeds were increased. The effect of intake valve timings on inlet air mass was also studied by this model. Advancing intake valve opening decreased inlet air mass slightly, and the optimum intake valve closing was found. The difference in inlet air mass between cylinders was very small in this engine.

Estimate on the Crustal Thickness from Using Multi-geophysical Data Sets and Its Comparison to Heat Flow Distribution of Korean Peninsula (다양한 지구물리 자료를 통해 얻은 한반도의 지각두께 예측과 지열류량과의 비교)

  • Choi, Soon-Young;Kim, Hyung-Rae;Kim, Chang-Hwan;Park, Chan-Hong;Suh, Man-Chul
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.493-502
    • /
    • 2011
  • We study the deep structure of Korean Peninsula by estimating Moho depth and crustal thickness from using land and oceanic topography and free-air gravity anomaly data. Based on Airy-Heiskanen isostatic hypothesis, the correlated components between the terrain gravity effects and free-air gravity anomalies by wavenumber correlation analysis(WCA) are extracted to estimate the gravity effects that will be resulted from isostatic compensation for the area. With the resulting compensated gravity estimates, Moho depth that is a subsurface between the crust and mantle is estimated by the inversion in an iterative method with the constraints of 20 seismic depth estimates by the receiver function analysis, to minimize the uncertainty of non-uniqueness. Consequently, the average of the resulting crustal thickness estimate of Korean Peninsula is 32.15 km and the standard deviation is 3.12 km. Moho depth of South Korea estimated from this study is compared with the ones from the previous studies, showing they are approximately consistent. And the aspects of Moho undulation from the respective study are in common deep along Taebaek Mountains and Sobaek Mountains and low depth in Gyeongsang Basin relatively. Also, it is discussed that the terrain decorrelated free-air gravity anomalies inferring from the intracrustal characteristics of the crust are compared to the heat flow distributions of South Korea. The low-frequency components of terrain decorrelated Free-air gravity anomalies are highly correlated with the heat flow data, especially in the area of Gyeongsang basin where high heat flow causes to decrease the density of the rocks in the lower crust resulting in lowering the Moho depth by compensation. This result confirms that the high heat sources in this area coming from the upper mantle by Kim et al. (2008).

Modeling of the Artery Tree in the Human Upper Extremity and Numerical Simulation of Blood Flow in the Artery Tree (상지동맥 혈관계의 모델링과 혈유동의 전산수치해석)

  • Kim, Keewon;Kim, Jaeuk U.;Beak, Hyun Man;Kim, Sung Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.221-226
    • /
    • 2016
  • Since arterial disease in the upper extremity is less common than that in the lower extremity, experimental and numerical investigations related to upper extremity have been rarely performed. We created a three-dimensional model of the arteries, larger than approximately 1 mm, in a Korean adult's left hand (from brachial to digital arteries), from 3T magnetic resonance imaging (MRI) data. For the first time, a three-dimensional computational fluid dynamic method was employed to investigate blood flow velocity, blood pressure variation, and wall shear stress (WSS) on this complicated artery system. Investigations were done on physiological blood flows near the branches of radial and deep palmar arch arteries, and ulnar and superficial palmar arch arteries. The flow is assumed to be laminar and the fluid is assumed to be Newtonian, with density and viscosity properties of plasma.

Analytical Study on the Discharge Transients of a Steam Discharging Pipe (증기방출배관의 급격과도현상에 대한 해석적 연구)

  • 조봉현;김환열;강형석;배윤영;이계복
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.202-208
    • /
    • 1998
  • As in the other industrial processes, a nuclear power plant involves a steam relieving process through which condensable steam is discharged and condensed in a subcooled pool. An analysis of steam discharge transients was carried out using the method of characteristics to determine the flow characteristics and dynamic loads of piping that are used for structural design of the piping and its supports. The analysis included not only the steam flow rate but also the flow rates of the air and water which originally exist in the pipe. The analytical model was developed for a uniform pipe with friction through which the flow was discharged into a suppression pool. Including the combinations of system elements such as reservoir, valve and branching pipe lines. The piping flow characteristics and dynamic loads were calculated by varying system pressure, pipe length, and submergence depth. It was found that the dynamic load, water clearing time and water clearing velocity at the water/air interface were dependent not only on the system pressure and temperature but also on the pipe length and submergence depth.

  • PDF

Anti-diabetic peptides derived from milk proteins (우유단백질 유래 혈당 조절 기능성 펩타이드)

  • Kim, Seonyoung;Imm, Jee-Young
    • Food Science and Industry
    • /
    • v.51 no.4
    • /
    • pp.302-312
    • /
    • 2018
  • Bioactive peptides generated from milk proteins play an important role in the prevention and alleviation of diabetes. Whey proteins possess direct insulinotropic effect by amino acids (especially branch chain amino acids) produced through its gastrointestinal digestion. Additionally, blood glucose level can be lowered by gut hormone which called incretin [glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)]. However, physiological effects of incretin readily disappeared by dipeptidyl peptidase-4 (DPP-4) causing degradation of GLP-1. Several DPP-4 inhibitors are currently used as therapeutic medicines for the treatment of type II diabetes. More than 60 natural peptide (2-14 amino acids) DPP-4 inhibitors were identified in milk proteins. Peptide DPP-4 inhibitors act as substrate inhibitor and delay breakdown of GLP-1 both in vitro and in vivo. This review summarizes nutritional quality of milk proteins, absorption and mode of action of bioactive peptides, and finally up-to-dated knowledge on DPP-4 inhibitory peptides derived from milk proteins.