• Title/Summary/Keyword: 분자 유전학

Search Result 287, Processing Time 0.022 seconds

Variations in Mutant Plants by chemical mutagen treatments of Dianthus superbus L. (술패랭이에서 화학돌연변이물질 처리에 따른 돌연변이 유기 및 변이 분석)

  • Lee, Kwang-Hoe;Lim, Jung-Dae;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.4
    • /
    • pp.334-341
    • /
    • 2000
  • This study was conducted to determine the effects and optimum concentrantion of chemical mutagens, colchicine, EMS (ethyl methan sulfonate), MNU (1-methyl-3-1­-nitrosoguanidinenitro), sodium azide $(NaN_3)$ for induction of mutant plants. In order to induce the mutants of Dianthus superbus L, immature seed were pre-soaked in the warter adding each mutagens and concentration of EMS, colchicine, MNU, and sodium azide $(NaN_3)$. Comparision of morphological characteristic and seed germination in each mutant plants differed depending on mutagen sources and their concentrations. When 0.2% EMS were treated on seed, germination decreased to 12% while untreated control was germinated 76.6% for twenty days. Treatments of colchicine appeared higher germination than other mutagen but not survived. The survival rate was extremely decreased in MNU treatment at 0.5mM and chlorophyll-mutant plantlets were obtained by sodium azide treatment at 0.2mM. Chlorophyll mutants were produced by pre-soaking the immature seed of Dianthus superbus L. with mutagen, sodium azide. The control plants appeared normal green leaf color, while mutant plant after mutagenic treatment of immature seed results in yellow­-green stripes and albino in normal green leaf tissue. RAPD was carried out to check the genetic modification of regenerated plants by mutagen treatments at 0.2mM sodium azide. Three polymorphic DNA fragments out of thirty-seven obtained by RAPDs were observed in regenerated plants using five decamer primers.

  • PDF

Mapping and Race Specific Reaction of the Resistance Gene Pi45(t) in Rice (벼 도열병 저항성 유전자 Pi45(t)의 균계 특이적 반응과 고밀도지도 작성)

  • Kim, Dong-Min;Ju, Hong-Guang;Yang, Paul;Han, Seong-Sook;Roh, Jae-Hwan;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • QTL analysis for blast resistance was carried out using 140 $BC_3F_3$ lines derived from a cross between Ilpum as a recurrent parent and Moroberekan as a donor parent. 140 $BC_3F_3$ lines with the parents were inoculated with nine blast isolates. To identify QTLs for resistance to nine blast isolates, 134 SSR markers showing polymorphisms between the parents were genotyped for the 140 $BC_3F_3$ lines. A total of 17 resistance QTLs to nine isolates were detected on chromosomes 2, 3, 4, 6, 7, 9 and 10. The phenotypic variance explained by each QTL ranged from 8.2% to 26.4%. The Moroberekan alleles contributed the positive effect at these 17 QTL loci. In a previous study, the QTL, Pi45(t) for durable resistance to blast was identified using a sequential planting method. To know the relationship between Pi45(t) and the isolate-specific resistance gene, an $F_2$ population was developed from a cross between Ilpum and an introgression line harboring Pi45(t). $F_3$ lines segregating for the Pi45(t) were inoculated to three isolates. $F_3$ lines from the $F_2$ plants with the Moroberekan segment at the target region showed resistance to two isolates. This result seems to indicate that the Pi45(t) and the isolate-specific resistance gene are tightly linked or the resistance is controlled by the same gene(s). The markers linked to genes controlling blast resistance would be useful in developing blast resistance lines in the breeding program.

Identification of Leaf Blast Resistance Genes Derived from a Korean Weedy Rice, Ganghwaaengmi 11 (잡초성벼인 강화앵미11 유래 잎도열병 저항성 유전자 탐색)

  • Suh, Jung-Pil;Cho, Young-Chan;Kim, Jeong-Ju;Shin, Young-Seop;Yang, Chang-Ihn;Roh, Jae-Hwan;Kim, Yeon-Gyu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.390-396
    • /
    • 2010
  • A weedy rice, Ganghwaaengmi 11, shows high level of leaf blast resistance. The chromosomal number and locations of genes conferring the leaf blast resistance were detected by QTL (quantitative trait loci) analysis using SSR markers in the 120 RILs (recombinant inbred lines) derived from the cross between Nagdongbyeo and Ganghwaaengmi 11. Ganghwaaengmi 11 expressed compatibility with 20 of the 45 inoculated blast isolates, in contrast to Nagdongbyeo with 44 compatible isolates. To identify QTLs affecting partial resistance, RILs were assessed in upland blast nursery in three regions and inoculated with selected nine blast isolates. QTLs for resistance to blast isolates were identified on chromosomes 7, 11 and 12. Three QTLs associated with blast resistance in nursery test at three regions were also detected on chromosomes 7, 11 and 12. The QTL commonly detected on chromosome 12 was only increased blast resistance by Ganghwaaengmi 11 allele. This QTL accounted for 60.3~78.6% of the phenotypic variation in the blast nursery test. OSR32 and RM101 markers tightly linked to QTL for blast resistance on chromosome 12 might be useful for marker-assisted selection (MAS) and gene pyramiding to improve the blast resistance of japonica rice.

SNP Marker Development for Purity Test of Oriental Melon and Melon (멜론 및 참외 순도 검정을 위한 SNP 마커 개발 및 F1 종자 순도 검정)

  • An, Song-Ji;Kwon, Jin-Kyung;Yang, Hee-Bum;Choi, Hye-Jeong;Jeong, Hee-Jin;Kim, Yong-Jae;Choi, Gyung-Ja;Kang, Byoung-Cheorl
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.397-406
    • /
    • 2010
  • Field screening method has been commonly used for purity test of $F_1$ hybrid seeds in melon and oriental melon. However, as this method takes a lot of time and cost, molecular marker-based purity test is necessary. To develop molecular markers for purity test, thirty pairs of SNP (single nucleotide polymorphism) primers were obtained from melon EST sequences, and 10 polymorphic markers showing HRM (high resolution melting) polymorphisms between parents of two melon cultivars and one oriental melon cultivar were selected. Blind tests were performed to validate usefulness of the selected markers for purity test. Blind test results showed that HRM genotypes were matched with the expected identity of individual sample, $F_1$ hybrid, male or female parents. Three HRM-based SNP markers were converted to CAPS markers for general use which is favor to breeders. We expect that SNP markers developed in this study will be useful for purity test of $F_1$ hybrid seeds in melon and oriental melon.

Molecular Characterization and Expression Analysis of Clathrin-Associated Adaptor Protein 3-δ Subunit 2 (AP3S2) in Chicken

  • Oh, Jae-Don;Bigirwa, Godfrey;Lee, Seokhyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • A chicken clathrin-associated adaptor protein $3-{\delta}$ subunit 2 (AP3S2) is a subunit of AP3, which is involved in cargo protein trafficking to target membrane with clathrin-coated vesicles. AP3S2 may play a role in virus entry into host cells through clathrin-dependent endocytosis. AP3S2 is also known to participate in metabolic disease developments of progressions, such as liver fibrosis with hepatitis C virus infection and type 2 diabetes mellitus. Chicken AP3S2 (chAP3S2) gene was originally identified as one of the differentially expressed genes (DEGs) in chicken kidney which was fed with different calcium doses. This study aims to characterize the molecular characteristics, gene expression patterns, and transcriptional regulation of chAP3S2 in response to the stimulation of Toll-like receptor 3 (TLR3) to understand the involvement of chAP3S2 in metabolic disease in chicken. As a result, the structure prediction of chAP3S2 gene revealed that the gene is highly conserved among AP3S2 orthologs from other species. Evolutionarily, it was suggested that chAP3S2 is relatively closely related to zebrafish, and fairly far from mammal AP3S2. The transcriptional profile revealed that chAP3S2 gene was highly expressed in chicken lung and spleen tissues, and under the stimulation of poly (I:C), the chAP3S2 expression was down-regulated in DF-1 cells (P<0.05). However, the presence of the transcriptional inhibitors, BAY 11-7085 (Bay) as an inhibitor for nuclear factor ${\kappa}B$ ($NF{\kappa}B$) or Tanshinone IIA (Tan-II) as an inhibitor for activated protein 1 (AP-1), did not affect the expressional level of chAP3S2, suggesting that these transcription factors might be dispensable for TLR3 mediated repression. These results suggest that chAP3S2 gene may play a significant role against viral infection and be involved in TLR3 signaling pathway. Further study about the transcriptional regulation of chAP3S2 in TLR3 pathways and the mechanism of chAP3S2 upon virus entry shall be needed.

Transcriptomic Analysis of Triticum aestivum under Salt Stress Reveals Change of Gene Expression (RNA sequencing을 이용한 염 스트레스 처리 밀(Triticum aestivum)의 유전자 발현 차이 확인 및 후보 유전자 선발)

  • Jeon, Donghyun;Lim, Yoonho;Kang, Yuna;Park, Chulsoo;Lee, Donghoon;Park, Junchan;Choi, Uchan;Kim, Kyeonghoon;Kim, Changsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.41-52
    • /
    • 2022
  • As a cultivar of Korean wheat, 'Keumgang' wheat variety has a fast growth period and can be grown stably. Hexaploid wheat (Triticum aestivum) has moderately high salt tolerance compared to tetraploid wheat (Triticum turgidum L.). However, the molecular mechanisms related to salt tolerance of hexaploid wheat have not been elucidated yet. In this study, the candidate genes related to salt tolerance were identified by investigating the genes that are differently expressed in Keumgang variety and examining salt tolerant mutation '2020-s1340.'. A total of 85,771,537 reads were obtained after quality filtering using NextSeq 500 Illumina sequencing technology. A total of 23,634,438 reads were aligned with the NCBI Campala Lr22a pseudomolecule v5 reference genome (Triticum aestivum). A total of 282 differentially expressed genes (DEGs) were identified in the two Triticum aestivum materials. These DEGs have functions, including salt tolerance related traits such as 'wall-associated receptor kinase-like 8', 'cytochrome P450', '6-phosphofructokinase 2'. In addition, the identified DEGs were classified into three categories, including biological process, molecular function, cellular component using gene ontology analysis. These DEGs were enriched significantly for terms such as the 'copper ion transport', 'oxidation-reduction process', 'alternative oxidase activity'. These results, which were obtained using RNA-seq analysis, will improve our understanding of salt tolerance of wheat. Moreover, this study will be a useful resource for breeding wheat varieties with improved salt tolerance using molecular breeding technology.

Bacterial Blight Resistance Genes Pyramided in Mid-Late Maturing Rice Cultivar 'Sinjinbaek' with High Grain Quality (벼흰잎마름병 저항성 유전자 집적 고품질 중만생 벼 '신진백')

  • Park, Hyun-Su;Kim, Ki-Young;Baek, Man-Kee;Cho, Young-Chan;Kim, Bo-Kyeong;Nam, Jeong-Kwon;Shin, Woon-Chul;Kim, Woo-Jae;Ko, Jong-Cheol;Kim, Jeong-Ju;Jeong, Jong-Min;Jeung, Ji-Ung;Lee, Keon-Mi;Park, Seul-Gi;Lee, Chang-Min;Kim, Choon-Song;Suh, Jung-Pil;Lee, Jeom-Ho
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.263-276
    • /
    • 2019
  • 'Sinjinbaek' is a bacterial blight (BB)-resistant, mid-late maturing rice cultivar with high grain quality. To diversify the resistance genes and enhance the resistance of Korean rice cultivars against BB, 'Sinjinbaek' was developed from a cross between 'Iksan493' (cultivar name 'Jinbaek') and the F1 cross between 'Hopum' and 'HR24670-9-2-1' ('HR24670'). 'Jinbaek' is a BB-resistant cultivar with two BB resistance genes, Xa3 and xa5. 'Hopum' is a high grain quality cultivar with the Xa3 resistance gene. 'HR24670' is a near-isogenic line that carries the Xa21 gene, a resistance gene inherited from a wild rice species O. longistaminata, in the genetic background of japonica elite rice line 'Suweon345'. 'Sinjinbaek' was selected through the pedigree method, yield trials, and local adaptability tests. Using bioassay for BB races and DNA markers for resistance genes, three resistance genes, Xa3, xa5, and Xa21, were pyramided in the 'Sinjinbaek' cultivar. 'Sinjinbaek' exhibited high-level and broad-spectrum resistance against BB, including the K3a race, the most virulent race in Korea. 'Sinjinbaek' is a mid-late maturing rice cultivar tolerant to lodging. It has multiple disease resistance against BB, rice blast, and stripe virus. The yield of 'Sinjinbaek' was similar to that of 'Nampyeong'. 'Sinjinbaek' showed excellent grain appearance, good taste of cooked rice, and enhanced milling performance, and we concluded that it could contribute to improving the quality of BB-resistant cultivars. 'Sinjinbaek' was successfully introgressed with the Xa21 gene without the linkage drag negatively affecting its agronomic characteristics. 'Sinjinbaek' improved the resistance of Korean rice cultivars against BB by introgression of a new resistance gene, Xa21, as well as by pyramiding three resistance genes, Xa3, xa5, and Xa21. 'Sinjinbaek' would be suitable for the cultivation in BB-prone areas since it has been used in breeding programs for enhancing plants' resistance to BB (Registration No. 7273).