Mapping and Race Specific Reaction of the Resistance Gene Pi45(t) in Rice

벼 도열병 저항성 유전자 Pi45(t)의 균계 특이적 반응과 고밀도지도 작성

  • Kim, Dong-Min (Department of Agronomy, Chungnam National University) ;
  • Ju, Hong-Guang (Agricultural Department, Agricultural College of Yanbian University) ;
  • Yang, Paul (Department of Agronomy, Chungnam National University) ;
  • Han, Seong-Sook (National Academy of Agricultural Science, RDA) ;
  • Roh, Jae-Hwan (National Institute of Crop Science, RDA) ;
  • Ahn, Sang-Nag (Department of Agronomy, Chungnam National University)
  • 김동민 (충남대학교 농업생명과학대학 농학과) ;
  • 구홍광 ;
  • 양바오로 (충남대학교 농업생명과학대학 농학과) ;
  • 한성숙 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 노재환 (농촌진흥청 국립식량과학원 작물환경과) ;
  • 안상낙 (충남대학교 농업생명과학대학 농학과)
  • Received : 2011.03.08
  • Published : 2011.03.30

Abstract

QTL analysis for blast resistance was carried out using 140 $BC_3F_3$ lines derived from a cross between Ilpum as a recurrent parent and Moroberekan as a donor parent. 140 $BC_3F_3$ lines with the parents were inoculated with nine blast isolates. To identify QTLs for resistance to nine blast isolates, 134 SSR markers showing polymorphisms between the parents were genotyped for the 140 $BC_3F_3$ lines. A total of 17 resistance QTLs to nine isolates were detected on chromosomes 2, 3, 4, 6, 7, 9 and 10. The phenotypic variance explained by each QTL ranged from 8.2% to 26.4%. The Moroberekan alleles contributed the positive effect at these 17 QTL loci. In a previous study, the QTL, Pi45(t) for durable resistance to blast was identified using a sequential planting method. To know the relationship between Pi45(t) and the isolate-specific resistance gene, an $F_2$ population was developed from a cross between Ilpum and an introgression line harboring Pi45(t). $F_3$ lines segregating for the Pi45(t) were inoculated to three isolates. $F_3$ lines from the $F_2$ plants with the Moroberekan segment at the target region showed resistance to two isolates. This result seems to indicate that the Pi45(t) and the isolate-specific resistance gene are tightly linked or the resistance is controlled by the same gene(s). The markers linked to genes controlling blast resistance would be useful in developing blast resistance lines in the breeding program.

본 연구는 모로베레칸의 잎도열병 저항성유전자를 탐색하고, 이 저항성유전자와 연관된 분자표지를 탐색하기 위해 수행되었다. 도열병에 이병성인 일품벼와 도열병에 강한 모로베레칸을 교잡하여 육성된 140개 $BC_3F_3$ 계통을 도열병 균계 반응을 통한 저항성 유전자 탐색에 이용하였다. 1. 40개 도열병 균계를 이용하여 양친을 검정한 결과, 모로베레칸은 모든 균계에 대하여 저항성 반응을 보였고, 일품벼는 35개 균계에 이병성 반응을 보였다. 2. 90-089 등 9개 균계를 선발하여 140개 $BC_3F_3$ 계통에 대한 저항성반응을 조사하였다. 실험 결과 88-002, 93-038, 90-089 및 03-018에 대해서는 몇몇 계통을 제외한 대부분의 계통들이 감수성 쪽으로 다소 치우친 경향을 보였다. 90-002, 86-311, 86-228 및 03-018 균계에 대해서는 대부분의 계통들이 저항성 쪽으로 치우친 경향을 보였다. 3. QTL 분석 결과, 7개 균계에 대해서 총 17개의 QTL이 탐색되었는데, 모든 저항성 유전자좌에서 모로베레칸의 대립 유전자가 저항성을 증진시켰다. 특히 4번 염색체 RM3276-RM5709 부근에서 도열병 균계 R90-059, 88-002, 93-038 및 90-089에 대한 저항성 QTL이 군집되어 있었다. 4. 연계재배법을 이용하여 탐지된 내구저항성 유전자 Pi45(t) 유전자좌의 위치에 모로베레칸 단편이 이입된 계통과 일품을 교배하여 목표 유전자좌에서 분리하는 $F_2$ 집단을 육성하고 유전자형을 검정하였다. 목표 유전자좌를 포함하는 염색체 지역에서 재조환이 일어난 개체를 이용하여 내구저항성 검정에 이용된 3개 균계를 접종한 결과, Pi45(t) 유전자좌를 포함하는 계통은 2개의 도열병 균계에 대해 저항성을 보였다. 이 결과는 내구저항성 관련 유전자와 균계 특이적 저항성유전자가 밀접히 연관되어 있던지 혹은 저항성에 동일한 유전자가 관여함을 보여준다. 이들 유전자들의 관계를 밝히기 위해서는 관련 유전자의 분리를 통한 특성 규명이 필요하다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Bonman JM, Khush GS, Nelson RJ. 1992. Breeding Rice for Resistance to Pests. Ann. Rev. in Phytopathol. 30:507- 528. https://doi.org/10.1146/annurev.py.30.090192.002451
  2. Bryan GT, Wu K, Farrall L, Jia Y, Hershey HP, McAdams S, Tarchini R, Donaldson G, Faulk K, Valent B. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033-2045. https://doi.org/10.1105/tpc.12.11.2033
  3. Chen DH, Nelson RJ, Wang GL, Inukai T, Mackill DJ, Ronald PC. 2000. Characterization of blast resistance in the durably resistant rice cultivar Moroberekan. In Tharreau et al. (eds.), Advances in Rice Blast Research. Kluwer Academic Publishers, The Netherlands. pp. 17-27.
  4. Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. 2006. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J. 46:794-804 https://doi.org/10.1111/j.1365-313X.2006.02739.x
  5. Cho YC, Kwon SW, Suh JP, Kim JJ, Lee JH, Roh JH, Oh MK, Kim MK, Ahn SN, Yang SJ, Kim YG. 2008. QTLs identification and confirmation of field resistance to leaf blast in temperate japonica rice (Oryza sativa L.). J. Crop Sci. Biotech. 11(4):269-276.
  6. Dai LY, Liu XL, Xiao YH, Wang GL. 2007. Recent advances in cloning and characterization of disease resistance genes in rice. J. Integr. Plant Biol. 29:112-119.
  7. Jeon JS, Chen D, Yi GH, Wang GL, Ronald PC. 2003. Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol. Genet. Gen. 269:280-289.
  8. Jeung JU, Kim BR, Cho YC, Han SS, Moon HP, Lee YT, Jena KK. 2007. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motif confers broad spectrum of blast resistance in rice. Theor. Appl. Genet. 115:1163-1177. https://doi.org/10.1007/s00122-007-0642-x
  9. Jia Y, Wang Z, Singh P. 2002. Development of dominant rice blast Pi-ta resistance gene markers. Crop Sci. 42: 2145-2149. https://doi.org/10.2135/cropsci2002.2145
  10. Ju HG, Kim DM, Kim MG, Han SS, Roh JH, Ahn SN. 2009. Mapping and analysis of field resistance gene to rice blast in an advanced backcross population between japonica cultivars in Rice. SABRAO J. Breeding and Genetics 41 (Special suppl.) ISSN 102907073.
  11. Kim BR, Roh JH, Choi SH, Ahn SW, Han SS. 2004. Durability of rice cultivars to blast in Korea by sequential planting method. Korean J. Breed. Sci. 36(5):350-356.
  12. Kwon SJ, Ahn SN, Hong HC, Cho YC, Suh JP, Kim YG, Kang KH, Han SS, Choi HC, Moon HP and Hwang HG. 2002. Identification of DNA markers linked to resistance genes to rice blast (Pyricularia grisea Sacc.). Korean J. Breed. 34(2):105-110.
  13. Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q. 2007. The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871-1880. https://doi.org/10.1534/genetics.107.080648
  14. Liu G, Lu G, Zeng L, Wang GL. 2002. Two broad-spectrum blast resistance genes, Pi(9) and Pi2(t), are physically linked on rice chromosome. Mol. Genet. Gen. 267:472-480. https://doi.org/10.1007/s00438-002-0677-2
  15. Liu X, Lin F, Wang L, Pan Q. 2007. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotidebinding site leucine-rich repeat gene that confers racespecific resistance to the blast fungus. Genetics 176:2541- 2549. https://doi.org/10.1534/genetics.107.075465
  16. McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T. 1997. Report on QTL nomenclature. Rice Genet. Newslett. Vol. 14:11-13.
  17. Murray MG, Thompson WF. 1980. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res. 8:4321-4325. https://doi.org/10.1093/nar/8.19.4321
  18. Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G. 2006. The broad-spectrum blast resistance gene Pi9 encodes an NBS-LRR protein and is a member of a multigene family in rice. Genetics 172:1901-1914. https://doi.org/10.1534/genetics.105.044891
  19. Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Helbert SH, Leach JE, Leung H. 2003. Candidate defense genes from rice, barley and maize and their association with qualitative and quantitative blast resistance in rice. Mol. Plant Microbe Inter. 16:14-24. https://doi.org/10.1094/MPMI.2003.16.1.14
  20. Suh JP, Roh JH, Cho YC, Han SS, Kim YG, Jena KK. 2009. The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines. Phytopathology 99:243-250. https://doi.org/10.1094/PHYTO-99-3-0243
  21. Terashima T, Fukuoka S, Saka N, Kudo S. 2008. Mapping of blast field resistance gene Pi39(t) of elite rice strain Chubu 111. Plant Breeding 6:1-6.
  22. Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421-1434.
  23. Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. 1999. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance gene. Plant J. 19:55-64. https://doi.org/10.1046/j.1365-313X.1999.00498.x
  24. Wu JL, Fan YY, Li DB, Zheng KL, Leung H, Zhuang JY. 2005. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor. Appl. Genet. 111:50-56. https://doi.org/10.1007/s00122-005-1971-2
  25. Xu X, Chen H, Fujimura T, Kawasaki S. 2008. Fine mapping of a strong QTL of field resistance against rice blast, Pikahei-1(t), from upland rice Kahei, utilizing a novel resistance evaluation system in the greenhouse. Theor. Appl. Genet. 117:997-1008. https://doi.org/10.1007/s00122-008-0839-7
  26. Zhou B, Qu SH, Liu GF, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang GL. 2006. The eight amino acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe oryzae. Mol. Plant-Microbe Interact. 19:1216-1228. https://doi.org/10.1094/MPMI-19-1216