• Title/Summary/Keyword: 분자생물학적 동정

Search Result 160, Processing Time 0.04 seconds

In silico Analysis of Downstream Target Genes of Transcription Factors (생명정보학을 이용한 전사인자의 하위표적유전자 분석에 관한 연구)

  • Hwang, Sang-Joon;Chun, Sang-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • Objective: In the previous study, we complied the differentially expressed genes during early folliculogenesis. Objective of the present study was to identify downstream target genes of transcription factors (TFs) using bioinformatics for selecting the target TFs among the gene lists for further functional analysis. Materials & Methods: By using bioinformatics tools, constituent domains were identified from database searches using Gene Ontology, MGI, and Entrez Gene. Downstream target proteins/genes of each TF were identified from database searches using TF database ($TRANSFAC^{(R)}$ 6.0) and eukaryotic promoter database (EPD). Results: DNA binding and trans-activation domains of all TFs listed previously were identified, and the list of downstream target proteins/genes was obtained from searches of TF database and promoter database. Based on the known function of identified downstream genes and the domains, 3 (HNF4, PPARg, and TBX2) out of 26 TFs were selected for further functional analysis. The genes of wee1-like protein kinase and p21WAF1 (cdk inhibitor) were identified as potential downstream target genes of HNF4 and TBX2, respectively. PPARg, through protein-protein interaction with other protein partners, acts as a transcription regulator of genes of EGFR, p21WAF1, cycD1, p53, and VEGF. Among the selected 3 TFs, further study is in progress for HNF4 and TBX2, since wee1-like protein kinase and cdk inhibitor may involved in regulating maturation promoting factor (MPF) activity during early folliculogenesis. Conclusions: Approach used in the present study, in silico analysis of downstream target genes, was useful for analyzing list of TFs obtained from high-throughput cDNA microarray study. To verify its binding and functions of the selected TFs in early folliculogenesis, EMSA and further relevant characterizations are under investigation.

Development of an Efficient Method of Screening for Watermelon Plants Resistant to Fusarium oxysporum f. sp. niveum (수박 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Jo, Eun Ju;Lee, Ji Hyun;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.409-419
    • /
    • 2015
  • This study was conducted to establish an efficient screening method for watermelon plants resistant to Fusarium wilt (FW), which is caused by Fusarium oxysporum f. sp. niveum (Fon). An HA isolate was prepared from a wilted watermelon plant in Haman-gun and identified as F. oxysporum f. sp. niveum based on morphological characteristics, molecular analyses of ITS (internal transcribed spacer) and TEF (translation elongation factor $1{\alpha}$) sequences, and host specificity on cucurbits including watermelon, melon, oriental melon, and cucumber. The assay for disease response of watermelon differentials indicated that the HA isolate was race 0. Among seven liquid media tested, the highest amount of Fon spores was produced from V8-juice broth, which was selected as a medium for mass production of Fon. The disease assay for 21 watermelon and 11 watermelon-rootstock cultivars demonstrated that 20 watermelon cultivars except for 'Soknoranggul' were susceptible; 'Soknoranggul' was moderately resistant. All the tested rootstock cultivars were highly resistant to the HA isolate. The evaluation of disease development depending on various conditions suggested that an efficient screening method for FW resistance in watermelon plants is to dip the roots of 10-day-old seedlings in spore suspension of $1.0{\times}10^5-1.0{\times}10^6conidia{\cdot}mL^{-1}$ for 30 min., to transplant the seedlings to plastic pots with a fertilized soil, and then to cultivate the plants at $25^{\circ}C$ for 3 weeks.

Genetic and Physiological Discrepancies from Isolates of Sclerotinia homoeocarpa causing Zoysiagrass Dollar Spot Disease (한국잔디에 발생하는 동전마름병 원인균의 유전 및 생리적 특성차이)

  • Park, Dae-Sup;Kim, Kyung-Duck;Kihl, Joon-Yeong;Pyee, Jae-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.65-76
    • /
    • 2006
  • Scz1, an isolate of Sclerotinia homoeocarpa, was recently reported as a novel pathogen responsible for dollar spot disease in Zoysiagrass, a warm season turfgrass. Scz1 possessed different characteristics on mycelial pigment, mycelial affinity and host pathogenecity compared to those of Scb1, a typical isolate, obtained from creeping bentgrass, a cool season turfgrass. In this study, only three isolates, Scz1, Scz2(another analogous isolate of Sclerotinia homoeocarpa from zoysiagrass), and Scb1, were examined at the molecular level using the internal transcribed spacer(ITS) and random amplified polymorphic DNA(RAPD) assays to verify their identification and genetic variation. As a result of ITS assay, partial ITS sequences of three isolates showed 94-97% similarity with a standardized ITS sequence of S. homoeocarpa registered on BLAST. In the analysis of RAPD, range value through similarity matrix was 0.167 between Scz1 and Scb1, 0.139 between Scz2 and Scb1, and 0.713 between Scz1 and Scz2, respectively. Furthermore, tendegram analysis indicated that Scz1 and Scz2, unlike Scb1, were clustered together as accompanying a high genetic similarity. In in vitro fungicide bioassay, $EC_{50}$ value representing the sensitivity degree to propiconazole, a well-known fungicide for dollar spot disease, was 0.012 ${\mu}g/ml$ for Sczl, 0.003 ${\mu}g/ml$ for Scz2, and 0.030 ${\mu}g/ml$ for Scb1. From all data taken, we concluded that both Scz1 and Scz2 belonged to one group of S. homoeocarpa, since they exhibit the same host range and high level of genetic similarity, whereas their chemical competences to a fungicide were different. This study would provide further approach for assessing genetic diversity of S. homoeocarpa isolates as well as characterizing individual isolate against chemical exposure.

Identification of Antagonistic Bacteria, Pseudomonas aurantiaca YC4963 to Colletotri­chum orbiculare Causing Anthracnose of Cucumber and Production of the Antibiotic Phenazine-l-carboxylic acid (Colletotrichum orbiculare에 대한 길항세균 Pseudomonas aurantiaca YC4963의 분리 동정 및 항균물질 Phenazine-1-carboxylic acid의 생산)

  • Chae Hee-Jung;Kim Rumi;Moon Surk-Sik;Ahn Jong-Woong;Chung Young-Ryun
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.342-347
    • /
    • 2004
  • A bacterial strain YC4963 with antifungal activity against Colletotrichum orbiculare, a causal organism of cucumber anthracnose was isolated from the rhizosphere soil of Siegesbeckia pubescens Makino in Korea. Based on physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bac­terial strain was identified as Pseudomonas aurantiaca. The bacteria also inhibited mycelial growth of several plant fungal pathogens such as Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani on PDA and 0.1 TSA media. The antifungal activity was found from the culture filtrate of this isolate and the active compound was quantitatively bound to XAD adsorption resin. The antibiotic compound was purified and identified as phenazine-l-carboxylic acid on the basis of combined spectral and chemical analyses data. This is the first report on the production of phenazine-l-carboxylic acid by Pseudomonas aurantiaca.

Biocontrol of Rhizoctonia solani Damping-off of Cucumber by Bacillus cereus KJA-118 (Bacillus cereus KJA-118을 이용한 오이 모잘록병의 생물학적 방제)

  • An, Kyu-Nam;Jung, Woo-Jin;Chae, Dong-Hyun;Park, Ro-Dong;Kim, Tae-Hwan;Kim, Yong-Woong;Kim, Young-Cheol;Cha, Gyu-Suk;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.247-255
    • /
    • 2003
  • A bacterium, KJA-118 showing a strong chitinase activity, was isolated and identified as Bacillus cereus. The strain produced maximum level of chitinase, when grown aerobically at $30^{\circ}C$ for 4 days in basal broth containing 1% colloidal chitin in the initial pH adjusted to 6.0. Among various carbon sources such as crab shell powder, chitin powder, colloidal chitin, and R. solani mycelium, maximum chitinase activity was found in culture broth supplemented with R. solani mycelium. When KJA-118 was incubated with R. solani, the cell wall of the fungus was found to be completely destroyed. SDS-PAGE and active staining results revealed that KJA-118 produced three isoforms of chitinase with molecular weights of 68 kDa, 47 kDa, and 37 kDa. When the suspension of KJA-118 was treated to cucumber seedlings, reducing rate of damping-off caused by R. solani was about 28.1%.

Discovery of Deleterious nsSNPs on the Genes related to the Lipid Metabolism and Prediction of Changes on Biological Function in Korean Native Chicken (한국 재래닭에서 지질대사 관련 유전자에 존재하는 유해성 nsSNP 발굴 및 생물학적 기능 예측)

  • Oh, Jae-Don;Shin, Dong-Hyun;Shin, Sang-Soo;Yoon, Chang;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.43 no.4
    • /
    • pp.263-272
    • /
    • 2016
  • In this study, we aimed to identify the nonsynonymous single nucleotide polymorphisms (nsSNPs) located in lipid metabolism-related genes because lipids are an important factor affecting the taste and flavor of meat, and they predict the functional consequences. The results showed that we identified 139 common nsSNPs in all five Korean native chicken (KNC) lines from the 81 genes related to lipid metabolism. Furthermore, sorting intolerant from tolerant (SIFT) and polymorphism phenotyping v2 (Polyphen-2) analyses predicted that among the genes, 14 nsSNPs of nine genes might be deleterious. Protein domain prediction of the nine genes revealed that all deleterious nsSNPs identified in this study were located outside the functional domain. This observation suggests that the common deleterious nsSNPs might be dispensable and have a minor effect on the traits of the KNCs.

Characterization of Streptomyces netropsis Showing a Nematicidal Activity against Meloidogyne incognita (Meloidogyne incognita에 살선충활성을 보이는 신규 Streptomyces netropsis의 살선충 특성 규명)

  • Jang, Ja Yeong;Choi, Yong Ho;Joo, Yoon-Jung;Kim, Hun;Choi, Gyung Ja;Jang, Kyoung Soo;Kim, Chang-Jin;Cha, Byeongjin;Park, Hae Woong;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.50-57
    • /
    • 2015
  • Control of nematode has become difficult owing to the restricted use of effective soil fumigant, methyl bromide, and other non-fumigant nematicides. Therefore, it is urgently necessary to develop microbial nematicide to replace chemical nematicides. In this study, the 50% aqueous methanol extraction solution of fermentation broths of 2,700 actinomycete strains were tested for their nematicidal activity against second stage of juveniles (J2s) of Meloidogyne incognita. As the results, only the 50% aqueous methanol extraction solution of AN110065, at 20% equivalent to 10% fermentation broth, showed strong nematicidal activity with 78.9% of mortality 24 h after treatment and 94.1% of mortality at 72 h. The 16S rRNA gene sequencing showed that the strain sequence was 99.78% identical to Streptomyces netropsis. The extract of S. netropsis AN110065 fermentation broth was successively partitioned with ethyl acetate and butanol and then the ethyl acetate, butanol and water layers were investigated for their nematicidal activity against the M. incognita. At $1000{\mu}g/ml$, ethyl acetate layer showed the strongest activity of 83.5% of juvenile mortality 72 h after treatment. The pot experiment using the fermentation broth of AN110065 on tomato plant against M. incognita displayed that it evidently suppressed gall formation at a 10-fold diluent treatment. The tomato plants treated with the fermentation broth of S. netropsis AN110065 did not show any phytotoxicity. The results suggest that S. netropsis AN110065 has a potential to serve as microbial nematicide in organic agriculture.

Survey of Fungal Diseases on Barley, Wheat, and Oats at Tillering to Stem Extension Stages in Southern Regions of Korea during 2020-2021 (2020-2021년 한국 남부 지역 보리, 밀, 귀리의 분얼 및 신장기에 발생한 곰팡이 병 조사)

  • Min-Hye Jeong;Eu Ddeum Choi;Seol-Hwa Jang;Sunmin An;Miju Jo;Seoyeon Kim;Sang-Min Kim;Sook-Young Park
    • Research in Plant Disease
    • /
    • v.30 no.3
    • /
    • pp.207-218
    • /
    • 2024
  • Cereal, including barley, wheat, and oats, is a major winter food crop in Korea. Despite recent changes in agricultural environments in response to climate change, fungal diseases that could affect cereal productivity remain poorly understood. In this study, we investigated the incidence of diseases in barley, wheat, and oats in the southern part of Korea. We collected fungal pathogens from seven locations where cereals were grown. In March-April of 2020 and 2021, a total of 92 fungal isolates were collected, mainly from the stem base or leaves of cereal crops during the tillering and stem extension stages of cereals in Korea. The collected isolates were identified based on morphological and molecular biological characteristics. The dominant species was Ceratobasidium cereale (42.4%), followed by Pyrenophora teres (21.7%), P. avenae (10.9%), Alternaria alternata (6.5%), and Epicoccum tobaicum (6.5%). In addition, P. tritici-repentis (3.3%), Cladosporium sp. (3.3%), Fusarium sp. (3.3%), and Nigrospora sp. (2.2%) were also collected as minority groups. Our results will provide information on fungal pathogens that occur during the growing season of cereals in Korea, particularly during the tillering and stem extension stages. In addition, the isolates collected from this study can serve as a valuable resource for conducting simulations on climate change, focusing on temperature and humidity.

Molecular Characterization of Hanwoo Glucose Transporter 4 Gene (한우 Glucose Transporter 4 유전자의 분자생물학적 해석)

  • Lee, S.M.;Jeong, Y.H.;Kim, H.M.;Park, H.Y.;Yoon, D.H.;Moon, S.J.;Chung, E.R.;Kang, M.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1087-1094
    • /
    • 2005
  • The uptake of glucose for metabolism and growth is essential to most animal cells and is mediated by glucose transport protein. In the glucose transport protein family, GLUT4 plays a key role in cellular glucose uptake stimulated by insulin in skeletal muscles and adipose tissue in rodents and human. In this studies, we reported the identification, characterization, and expression of Hanwoo GLUT4 gene. The Hanwoo GLUT4 cDNA includes a 1527 bp open reading frame encoding a protein of 509 amino acids. The GLUT4 amino acid sequences of the Hanwoo show strong conservation with the corresponding sequences reported in other species. The highest mRNA expression of GLUT4 was detected in heart and lower expression was detected in rib meat, sirloin, and colon. We confirmed the expression of GLUT4 in the subcutaneous and small intestinal adipose tissue using RT-PCR. To investigate the expression of GLUT4 in the bovine intramuscular adipose differentiation, fibroblast-like cells were isolated from the sirloin of Hanwoo bull aged 12 months by collagenase digestion of minced tissue and cultured with activators of PPAR gamma. We identified that GLUT4 mRNA expression decreased during differentiation of preadipocytes into adipocyte in Korean cattle. These results indicated that function of GLUT4 in bovine adipose tissue was different from that of mouse and human.

Production and Characterization of Extracellular Polysaccharide Produced by Pseudomonas sp. GP32 (Pseudomonas sp. GP32에 의해 생산된 세포 외 다당류의 생산 및 특성)

  • Lee, Myoung Eun;Lee, Hyun Don;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1027-1035
    • /
    • 2015
  • A strain GP32 which produces a highly viscous extracellular polysaccharide was conducted with soil samples and identified as Pseudomonas species. The culture flask conditions for the production of extracellular polysaccharide by Pseudomonas sp. GP32 were investigated. The most suitable carbon and nitrogen source for extracellular polysaccharide production were galactose and (NH4)2SO4. The optimum carbon/nitrogen ratio for the production of extracellular polysaccharide was around 50. The optimum pH and temperature for extracellular polysaccharide production was 7.5 and 32℃, respectively. In batch fermentation using a jar fermentor, the highest extracellular polysaccharide content (15.7 g/l) was obtained after 70 hr of cultivation. The extracellular polysaccharide produced by Pseudomonas sp. GP32 (designated Biopol32) was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation, and gel permeation chromatography. Biopol32, which has an estimated molecular weight of over 3×107 datons, is a novel polysaccharide derived from sugar components consisting of galactose, glucose, gulcouronic acid and galactouronic acid in an approximate molar ratio of 1.85 : 3.24 : 1.00 : 1.42. The solution of Biopol32 showed non-Newtonian characteristics. The viscosity of Biopol32 exhibited appeared to be higher at all concentration compared to that of zooglan from Zoogloea ramigera. An analysis of the flocculating efficiency of Biopol32 in industry wastewater (food, textile, and paper wastewater) revealed chemical oxygen demand (COD) reduction rates 58.4-67.3% and suspended solid (SS) removal rates 82.6-91.3%. Based on these results, Biopol32 is a possible candidate for industrial applications such as wastewater treatment.