• Title/Summary/Keyword: 분자도킹

Search Result 14, Processing Time 0.018 seconds

Molecular Docking System using Parallel GPU (병렬 GPU를 이용한 분자 도킹 시스템)

  • Park, Sung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.441-448
    • /
    • 2008
  • The molecular docking system needs a large amount of computation and requires super-computing power. Since the experiment requires a large amount of time, the experiment is conducted in the distributed environment or in the grid environment. Recently, researches on using parallel GPU of far higher performance than that of CPU in scientific computing have been very actively conducted. CUDA is an open technique by which a parallel GPU programming is made possible. This study proposes the molecular docking system using CUDA. It also proposes algorithm that parallels energy-minimizing-computation. To verify such experiments, this study conducted a comparative analysis on the time required for experimenting molecular docking in general CPU and the time and performance of the parallel GPU-based molecular docking which is proposed in this study.

Impact of input ligand conformations on protein-ligand docking performances

  • Yang, Jin-Sol;Baek, Min-Gyeong;Seok, Cha-Ok
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.96-101
    • /
    • 2016
  • 대부분의 단백질-리간드 도킹 프로그램에서 리간드의 구조 유연성은 리간드의 회전 가능한 torsion angle들을 샘플링 하는데 국한된다. 따라서 도킹에 사용되는 초기 리간드 구조의 결합길이, 결합각, ring 구조 등에 따라 단백질-리간드 도킹의 성공여부가 달라질 수 있다. 실제 단백질-리간드 도킹 프로그램을 이용하여 단백질-리간드 상호작용을 연구하는 경우, 리간드의 구조를 임의의 구조 데이터베이스로부터 얻거나 다양한 리간드 3차원 구조 생성 프로그램 등을 이용하여 생성하게 된다. 따라서 리간드의 초기 구조가 단백질-리간드 도킹 프로그램의 성능에 어떤 영향을 주는지 살펴보는 것은 실제 단백질-리간드 도킹을 활용하는 경우에 단백질-리간드 도킹 프로그램의 성능이 어떨 것인지 알아볼 수 있다는 점에서 매우 중요하다. 본 연구에서는 리간드 분자의 초기 구조가 단백질-리간드 도킹에 미치는 영향을 알아보기 위해 30개의 단백질-리간드 복합체 표적에 대해 리간드의 초기 구조를 다양하게 생성하여 GalaxyDock으로 단백질-리간드 복합체 구조를 예측하였다. 도킹을 위한 리간드 분자를 만들 때 Ring library에서 여러 가능한 ring의 conformation을 가져오는 방법으로 리간드의 구조를 다양하게 만들었으며, 도킹 결과 한 가지 모델만 사용했을 때에 비해 도킹의 성공률이 70%에서 80%로 10% 증가한 것을 확인하였다. 또한 특히 구조적으로 유연한 ring이 리간드에 있는 경우 초기 구조가 도킹의 성공률에 큰 영향을 미치는 것을 확인할 수 있었다.

  • PDF

Molecular Docking to Acetyl-CoA Carboxylase of 2-(4-(6-chloro-2-benzoxazolyl)oxy)phenoxy-N-phenylpropionamide Analogues and Their Herbicidal Activity (Acetyl-CoA Carboxylase에 대한 2-(4-(6-chloro-2-benzoxazolyl)oxy)phenoxy-N-phenylpropionamide 유도체들의 분자 도킹과 제초활성)

  • Choi, Won-Seok;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.183-190
    • /
    • 2010
  • To search the new potent herbicidal agents by receptor-based approach, the interactions between receptor and substrate molecules from molecular docking to acetyl-CoA carboxylase(PDB code: 3K8X) of 2-(4-(6-chloro-2-benzoxazolyl)oxy)phenoxy-N-phenylpropionamide analogues (1-38) as substrate molecules were performed and discussed quantitatively. The most of the substrate molecules were formated 2 H-bonds between carbonyl oxygen atom of the substrate molecules and the amino acid residues (Ala1627 and Ile1735) in binding site of acetyl-CoA carboxylase (ACCase). But, the substrate molecules such as $R_l$=Acetyl substituents (6 & P9) were formated 3 H-bonds between H-bond acceptors in the substrate molecules and the H-bond donors in three amino acid residues including the rest residue (Gly 1998). Therefore, the inhibitory activity factors of the substrate molecules against ACCase are due to the H-bonding characters that will be able to apply to the optimization of herbicidal agents.

3D-QSARs analyses for Tyrosinase Inhibitory Activity of 2-Phenyl-1,4-benzopyrone (Flavones) Analogues and Molecular Docking (2-Phenyl-1,4-benzopyrone 유도체 (Flavones)의 Tyrosinase 저해활성에 관한 3D-QSARs 분석과 분자도킹)

  • Park, Joon-Ho;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.4
    • /
    • pp.225-231
    • /
    • 2010
  • To understand the inhibitory activity with changing hydroxyl substituents ($R_l-R_9$) of polyhydroxy substituted 2-phenyl-l,4-benzopyrone analogues (1-25) against tyrosinase (PDB ID: oxy-form; 1WX2), molecular docking and the three dimensional quantitative structure-activity relationships (3D-QSARs: Comparative molecular field analysis (CoMFA) & Comparative molecular similarity indices analysis (CoMSIA)) were studied quantitatively. The statistically best models were CoMFA 1 and CoMSIA 1 model from the results. The optimized CoMSIA 1 model with the sensitivity of the perturbation and the prediction produced ($dq^2'/dr_{yy'}^2$=1.009 & $q^2$=0.51l) by a progressive scrambling analysis were not dependent on chance correlation. The inhibitory activities with optimized CoMSIA 1 model were dependent upon electrostatic factor (51.4%) of substrate molecules. Contour mapping the 3D-QSAR models to the active site of tyrosinase provides new insight into the interaction between tyrosinase as receptor and 2-phenyl-l,4-benzopyrone analogues as inhibitor. Therefore, the results will he able to apply to the optimization of a new potent tyrosinase inhibitors.

The Roles of Hydroxyl Substituents in Tyrosinase Inhibitory Activation of Flavone Analogues (Flavone 유도체들의 Tyrosinase 저해활성화 반응에서 Hydroxyl 치환기들의 역할)

  • Park, Joon-Ho;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • Molecular docking of polyhydroxy substituted flavone analogues (1-25) as substrate molecules to the active site of tyrosinase (PDB ID: Deoxy-form (2ZMX) & Oxy-form (1WX2)) and Free-Wilson analysis were studied to understand the roles of hydroxyl substituents ($R_1-R_9$) in substrate molecules for the tyrosinase inhibitory activation. It is founded from Free-Wilson analysis that the $R_1$=hydroxyl among $R_1-R_9$ substituents had the strongest influence on the tyrosinase inhibitory activity. H-bonds between the hydroxyl substituents of substrate molecules and amino acid residues in the active site of tyrosinase were contributed to make a stable substrate-receptor complex compound. Particularly, it is proposed from the findings that the noncompetitive inhibitory activation would take place via H-bonding between peroxide oxygen (Per404) atom in the active site of tyrosinase and the hydroxyl substituents in substrate molecule.

Research on Effective Use of A Serious Bio-Game (기능성 Bio-Game의 활용 방안에 관한 연구)

  • Park, Sung-Jun;Lee, Jun;Kim, Jee-In
    • Journal of Korea Game Society
    • /
    • v.9 no.1
    • /
    • pp.93-103
    • /
    • 2009
  • A Serious Game helps the learners to recognize the problems effectively, grasp and classify important information needed to solve the problems and convey the contents of what they have learned. Owing not only to this game-like fun but also to the educational effect, The Serious Game can be usefully applied to education and training in the areas of scientific technology and industrial technology. This study proposes the Serious Game that users can apply to biotechnology by using intuitive multi-modal interfaces. In this study, a stereoscopic monitor is used to make three dimensional molecular structures, and multi-modal interface is used to efficiently control. Based on a such system, this study easily solved the docking simulation function, which is one of the important experiments, by applying these game factors. For this, we suggested the level-up concept as a game factor that depends on numbers of objects and users. The proposed system was evaluated in performance comparison in result time of a new drug design process on AIDS virus with previous approach.

  • PDF

A Virtual Reality Molecular Modeling System for Synchronous and Asynchronous Remote Collaboration (동기식 및 비동기식 원격 협업을 위한 가상현실 기반의 분자 모델링 시스템 -가상현실 기반의 분자 도킹 프로세스 및 구조 결정학 시뮬레이션 협업 시스템-)

  • Lee, Jun;Kim, Hyung-Seok;Kang, Lin-Woo;Kim, Jee-In
    • Journal of the HCI Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • A computer supported cooperative work(CSCW) system is a collaboration system, which enables cooperative works among various participants through the Internet. A collaborative virtual reality environment(CRVE) can be used in scientific research and cultural research because it can provide users with virtual experiences of three dimensional molecular models in cyberspace. However, general CVRE systems are only focused on synchronous collaborations. We propose a remote collaboration system, which provides synchronous and asynchronous cooperation in collaborative virtual reality environment. The proposed system can be applied to bioscience experiments such as molecular docking process, and crystallography simulation. The proposed system is evaluated in performance comparison with previous approaches.

  • PDF

A Bio-Edutainment System to Virus-Vaccine Discovery based on Collaborative Molecular in Real-Time with VR

  • Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.109-117
    • /
    • 2020
  • An edutainment system aims to help learners to recognize problems effectively, grasp and classify important information needed to solve the problems and convey the contents of what they have learned. Edutainment contents can be usefully applied to education and training in the both scientific and industrial areas. Our present work proposes an edutainment system that can be applied to a drug discovery process including virtual screening by using intuitive multi-modal interfaces. In this system, a stereoscopic monitor is used to make three-dimensional (3D) macro-molecular images, with supporting multi-modal interfaces to manipulate 3D models of molecular structures effectively. In this paper, our system can easily solve a docking simulation function, which is one of important virtual drug screening methods, by applying gaming factors. The level-up concept is implemented to realize a bio-game approach, in which the gaming factor depends on number of objects and users. The quality of the proposed system is evaluated with performance comparison in terms of a finishing time of a drug docking process to screen new inhibitors against target proteins of human immunodeficiency virus (HIV) in an e-drug discovery process.

Comparison of Voxel Map and Sphere Tree Structures for Proximity Computation of Protein Molecules (단백질 분자에 대한 proximity 연산을 위한 복셀 맵과 스피어 트리 구조 비교)

  • Kim, Byung-Joo;Lee, Jung-Eun;Kim, Young-J.;Kim, Ku-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.794-804
    • /
    • 2012
  • For the geometric computations on the protein molecules, the proximity queries, such as computing the minimum distance from an arbitrary point to the molecule or detecting the collision between a point and the molecule, are essential. For the proximity queries, the efficiency of the computation time can be different according to the data structure used for the molecule. In this paper, we present the data structures and algorithms for applying proximity queries to a molecule with GPU acceleration. We present two data structures, a voxel map and a sphere tree, where the molecule is represented as a set of spheres, and corresponding algorithms. Moreover, we show that the performance of presented data structures are improved from 3 to 633 times compared to the previous data structure for the molecules containing 1,000~15,000 atoms.

An Algorithm for Finding Surface Atoms of a Protein Molecule Based on Voxel Map Representation (복셀 맵을 이용한 단백질 표면 원자의 발견 알고리즘)

  • Kim, Byung-Joo;Kim, Ku-Jin;Seong, Joon-Kyung
    • The KIPS Transactions:PartA
    • /
    • v.19A no.2
    • /
    • pp.73-76
    • /
    • 2012
  • In this paper, we propose an efficient method to extract surface atoms from a protein molecule. Surface atoms are defined as a set of atoms who can contact given probe solvent $P$, where $P$ does not collide with the molecule. The atoms contained in the molecule are represented as a set of spheres with van der Waals radii. The probe solvent also is represented as a sphere. We propose a method to extract the surface atoms by computing the offset surface of the molecule with respect to the radius of $P$. For efficient computation of the offset surface of a molecule, a voxel map is constructed for the offset surfaces of the spheres. Based on GPU (graphic processor unit) acceleration, a data parallel algorithm is used to extract the surface atoms in 42.87 milliseconds for the molecule containing up to 6,412 atoms.