• Title/Summary/Keyword: 분산 병렬처리

Search Result 411, Processing Time 0.03 seconds

High Resolution Rainfall Prediction Using Distributed Computing Technology (분산 컴퓨팅 기술을 이용한 고해상도 강수량 예측)

  • Yoon, JunWeon;Song, Ui-Sung
    • Journal of Digital Contents Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • Distributed Computing attempts to harness a massive computing power using a great numbers of idle PCs resource distributed linked to the internet and processes a variety of applications parallel way such as bio, climate, cryptology, and astronomy. In this paper, we develop internet-distributed computing environment, so that we can analyze High Resolution Rainfall Prediction application in meteorological field. For analyze the rainfall forecast in Korea peninsula, we used QPM(Quantitative Precipitation Model) that is a mesoscale forecasting model. It needs to a lot of time to construct model which consisted of 27KM grid spacing, also the efficiency is degraded. On the other hand, based on this model it is easy to understand the distribution of rainfall calculated in accordance with the detailed topography of the area represented by a small terrain model reflecting the effects 3km radius of detail and terrain can improve the computational efficiency. The model is broken down into detailed area greater the required parallelism and increases the number of compute nodes that efficiency is increased linearly.. This model is distributed divided in two sub-grid distributed units of work to be done in the domain of $20{\times}20$ is networked computing resources.

Technology of Distributed Stream Computing (분산 스트림 컴퓨팅 기술 동향)

  • Lee, M.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 2011
  • 데이터의 효과적인 활용이 경쟁력 확보에 주요한 요인이나, 데이터 폭증은 유용한 정보를 얻는데 필요한 처리 시간의 지연을 야기하고 있다. 개인 맞춤형 서비스, 방범 방재 서비스 등 모니터링 & 대응 서비스를 위해 분석할 데이터의 양이 급증하고 있으며, 텍스트, 영상, 오디오 등 비정형 데이터에 대한 실시간 분석 필요성이 증대하고 있다. 대량의 폭증하는 데이터에 대한 실시간 분석 처리 환경을 제공하기 위해 분산 병렬 컴퓨팅 기술과 데이터 스트림 연속 처리 기술이 활용되고 있다. 본고에서는 폭증하는 데이터 스트림 처리를 위하여 확장성 및 유연한 처리 환경을 제공하는 분산 스트림 컴퓨팅 기술에 대해 소개한다.

  • PDF

Optimization and Performance Analysis of Distributed Parallel Processing Platform for Terminology Recognition System (전문용어 인식 시스템을 위한 분산 병렬 처리 플랫폼 최적화 및 성능평가)

  • Choi, Yun-Soo;Lee, Won-Goo;Lee, Min-Ho;Choi, Dong-Hoon;Yoon, Hwa-Mook;Song, Sa-kwang;Jung, Han-Min
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.1-10
    • /
    • 2012
  • Many statistical methods have been adapted for terminology recognition to improve its accuracy. However, since previous studies have been carried out in a single core or a single machine, they have difficulties in real-time analysing explosively increasing documents. In this study, the task where bottlenecks occur in the process of terminology recognition is classified into linguistic processing in the process of 'candidate terminology extraction' and collection of statistical information in the process of 'terminology weight assignment'. A terminology recognition system is implemented and experimented to address each task by means of the distributed parallel processing-based MapReduce. The experiments were performed in two ways; the first experiment result revealed that distributed parallel processing by means of 12 nodes improves processing speed by 11.27 times as compared to the case of using a single machine and the second experiment was carried out on 1) default environment, 2) multiple reducers, 3) combiner, and 4) the combination of 2)and 3), and the use of 3) showed the best performance. Our terminology recognition system contributes to speed up knowledge extraction of large scale science and technology documents.

Effective Parallel Hash Join Algorithm Based on Histoftam Equalization in the Presence of Data Skew (데이터 편재 하에서 히스토그램 변환기법에 기초한 효율적인 병렬 해쉬 결합 알고리즘)

  • Park, Ung-Gyu;Choe, Hwang-Gyu;Kim, Tak-Gon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.338-348
    • /
    • 1997
  • In this pater, we first propose a data distribution framework to resolve load imbalance and bucket oerflow in parallel hash join.Using the histogram equalization technique, the framework transforms a histogram of skewed data to the desired uniform distribution that corresponds to the relative computing power of node processors in the system.Next we propose an effcient parallel hash join algorithm for handing skwed data based on the proposed data distribution methodology.For performance comparison of our algorithm with other hash join algorithms.we perform similation experiments and actual exeution on COREDB database computer with 8-node hyperube architecture. In these experiments, skwed data distebution of the join atteibute is modeled using a Zipf-like distribution.The perfomance studies undicate that our algorithm outperforms other algorithms in the skewed cases.

  • PDF

An Adaptive Task Allocation Scheme in a Java Parallel Processing System based on the WWW (WWW기반 자바 병렬 처리 시스템에서 적응적 태스크 할당 기법)

  • 최광희;한연희;정영식;황종선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.706-708
    • /
    • 1998
  • WWW에서 의뢰인- 병렬처리 서버- 작업자 구성을 이용하여, 작업자 애플릿을 임의의 호스트에 분산시키고, 대량의 연산수행을 지닌 작업을 배분하여 수행시킨 뒤, 그 결과를 의뢰인에게 보여주는 WWW 기반 자바병렬 시스템이 기존의 LAN상에서의 병렬 시스템보다 확장성 및 이용 용이성 면에서 크게 주목을 끌고 있다. 이러한 WWW 기반 자바 병렬 처리 시스템에서 서버가 주어진 태스크들을 작업자들에게 할당하는 효율적인 기법이 크게 요구된다. 본 논문에서는, 이미 구현된 WWW 기반 자바 병렬 시스템 원형(prototype)에서 효율적인 적응적 태스크 할당 기법을 제시한다. 제안하는 적응적 태스크 할당 기법이 WWW에서 여러 호스트들의 성능이 시간의 흐름에 따라 크게 변화하는 상황에 크게 이점이 있음을 성능 분석 및 평가를 통해 보여준다.

  • PDF

A Sampling based Pruning Approach for Efficient Angular Space Partitioning based Skyline Query Processing (효율적인 각 기반 공간 분할 병렬 스카이라인 질의 처리를 위한 데이터 샘플링 기반 프루닝 기법)

  • Choi, Woo-Sung;Min, Jong-Hyeon;Chung, Jaehwa;Jung, SoonYoung
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.55-58
    • /
    • 2016
  • 스카이라인 질의란 다수의 선택지 중 '선호될 만한(preferable)' 선택지를 요청하는 질의이다. 사용자가 검토해야하는 선택지의 수를 대폭 감소시키는 스카이라인 질의는 데이터가 폭증하는 빅데이터 환경에서 매우 유용하게 활용된다. 이러한 배경에서 대용량 데이터에 대한 스카이라인 질의를 분산 병렬 처리하는 기법이 각광을 받고 있으며, 특히 맵리듀스(MapReduce) 기반의 분산 병렬 처리 기법 연구가 활발히 진행 중이다. 맵리듀스 기반 알고리즘의 병렬성 제고를 위해서는 부하 불균등 문제 중복 계산 문제 과다한 네트워크 비용 발생 문제를 해소해야 한다. 최근 각 기반 공간분할 기법을 사용하여 부하 불균등 문제와 중복 계산 문제를 해소하는 맵리듀스 기반 스카이라인 질의 처리 기법이 제안되었으나 해당 기법은 네트워크 비용 관점에서 최적화되어있지 않다. 본 논문에서는 부하 불균등 문제와 중복 계산 문제를 해소하면서도 프루닝을 통해 네트워크 비용 절감 시킬 수 있는 새로운 맵리듀스 기반 병렬 스카이라인 질의 처리 기법인 MR-SEAP(MapReduce sample Skyline object Equality Angular Partitioning)을 제안한다. MR-SEAP에서는 데이터를 샘플링하여 샘플 스카이라인 객체를 추출한 뒤 해당 객체들을 균등 분배하는 각도를 기준으로 공간을 분할하여 스카이라인 질의를 병렬 계산하되, 샘플 스카이라인을 이용하여 다수의 객체를 사전에 프루닝함으로써 네트워크 비용을 절감한다. 본 논문에서는 다양한 데이터 수량(cardinality) 및 분포(distribution)에 따른 제안 기법의 성능을 실험 평가함으로써 제안 기법의 우수성을 검증한다.

Hybrid Channel Model in Parallel File System (병렬 파일 시스템에서의 하이브리드 채널 모델)

  • Lee, Yoon-Young;Hwangbo, Jun-Hyung;Seo, Dae-Wha
    • The KIPS Transactions:PartA
    • /
    • v.10A no.1
    • /
    • pp.25-34
    • /
    • 2003
  • Parallel file system solves I/O bottleneck to store a file distributedly and read it parallel exchanging messages among computers that is connected multiple computers with high speed networks. However, they do not consider the message characteristics and performances are decreased. Accordingly, the current study proposes the Hybrid Channel model (HCM) as a message-management method, whereby the messages of a parallel file system are classified by a message characteristic between control messages and file data blocks, and the communication channel is divided into a message channel and data channel. The message channel then transfers the control messages through TCP/IP with reliability, while the data channel that is implemented by Virtual Interface Architecture (VIA) transfers the file data blocks at high speed. In tests, the proposed parallel file system that is implemented by HCM exhibited a considerably improved performance.

Implementation of Tiering Storage to Support High-Performance I/O (고성능 I/O 지원을 위한 계층형 스토리지 구현)

  • Junweon Yoon;Taeyeong Hong
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.50-52
    • /
    • 2023
  • ML/DL과 같은 AI의 연구가 HPC 환경에서 수행되면서 데이터 병렬화, 분산 학습 및 대규모 데이터 세트를 처리를 위한 요구사항이 급격히 증가하였다. 또한, 병렬처리 연산에 특화된 가속기 기반 이기종 아키텍처 환경 변화로 I/O 처리에 고대역폭, 저지연의 스토리지 기술을 필요로 하고 있다. 본 논문에서는 고집적의 병렬 컴퓨팅 환경에 고성능 HPC, AI 애플리케이션을 처리하기 위한 티어링 스토리지 기술을 논한다. 나아가 실제 고성능 NVMe 기반의 플래시 티어링 계층 구성에서 액세스 패턴에 따른 데이터 처리 환경을 구축하고 성능을 검증한다. 이로써 다양한 사용자 어플리케이션의 I/O 패턴을 특성에 맞게 지원할 수 있다.

A Study on Performance Improvement of Distributed Computing Framework using GPU (GPU를 활용한 분산 컴퓨팅 프레임워크 성능 개선 연구)

  • Song, Ju-young;Kong, Yong-joon;Shim, Tak-kil;Shin, Eui-seob;Seong, Kee-kin
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.499-502
    • /
    • 2012
  • 빅 데이터 분석의 시대가 도래하면서 대용량 데이터의 특성과 계산 집약적 연산의 특성을 동시에 가지는 문제 해결에 대한 요구가 늘어나고 있다. 대용량 데이터 처리의 경우 각종 분산 파일 시스템과 분산/병렬 컴퓨팅 기술들이 이미 많이 사용되고 있으며, 계산 집약적 연산 처리의 경우에도 GPGPU 활용 기술의 발달로 보편화되는 추세에 있다. 하지만 대용량 데이터와 계산 집약적 연산 이 두 가지 특성을 모두 가지는 문제를 처리하기 위해서는 많은 제약 사항들을 해결해야 하는데, 본 논문에서는 이에 대한 대안으로 분산 컴퓨팅 프레임워크인 Hadoop MapReduce와 Nvidia의 GPU 병렬 컴퓨팅 아키텍처인 CUDA 흘 연동하는 방안을 제시하고, 이를 밀집행렬(dense matrix) 연산에 적용했을 때 얻을 수 있는 성능 개선 효과에 대해 소개하고자 한다.

Concurrent blockchain architecture with small node network (소규모 노드로 구성된 고속 병렬 블록체인 아키텍처)

  • Joi, YongJoon;Shin, DongMyung
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.19-29
    • /
    • 2021
  • Blockchain technology fulfills the reliance requirement and is now entering a new stage of performance. However, the current blockchain technology has significant disadvantages in scalability and latency because of its architecture. Therefore, to adopt blockchain technology to real industry, we must overcome the performance issue by redesigning blockchain architecture. This paper introduces several element technologies and a novel blockchain architecture TPAC, that preserves blockchain's technical advantage but shows more stable and faster transaction processing performance and low latency.