최근 컴퓨터 게임은 점점 복잡해지며 게임 이용자들은 컴퓨터에 의해 행동하는 NPC들이 보다 사실적이며 세련되길 원하기 때문에 게임NPC 개발자들은 인공지능 측면에서 보다 많은 노력을 기울일 필요가 있다. 이에 따라, 게임 NPC 지능 개발을 위한 플랫폼은 보다 사실적이며 반응적이고 쉬운 NPC 개발을 위해 실시간, 독립성, 유연성, 그룹 행동을 비롯한 다양한 인공지능을 지원해야 한다. 본 논문에서는 이전 플랫폼들의 문제점들을 알아보고, 해결하기 위한 게임 NPC 지능 개발 플랫폼의 구조를 제안한다. 제안하는 플랫폼은 4개의 모듈로 구성되며, 부하분산을 통해 기존 플랫폼들보다 높은 성능을 보여주며, 각 모듈을 통해 다양한 인공지능 기법 지원, 효율적인 그룹 행동, 다양한 게임 환경에서 독립적인 NPC 개발과 같은 장점들을 가진다.
인공지능 분석에서 모델을 만들고 이를 검증하는 과정은 이미 생성된 데이터를 가지고 수행하는 Batch Processing이기에 연산 처리시간이 필요한 작업이다. 우리는 주식이나 국방 정보와 같은 실시간으로 발생하는 데이터를 바로 앞에서 발생한 데이터를 가지고 실시간으로 모델을 세우고 검증하여 예측하는 것이 필요하다. 이를 위한 해결책으로, 인공지능 모델링 작업에 필요한 데이터를 시간 처리 순으로 분할하고 데이터를 여러 프로세스에서 분산 처리하는 기법을 적용하여 해결하였다.
Federated learning (FL)-based network intrusion detection techniques have enormous potential for securing the Industrial Internet of Things (IIoT) cybersecurity. The openness and connection of systems in smart industrial facilities can be targeted and manipulated by malicious actors, which emphasizes the significance of cybersecurity. The conventional centralized technique's drawbacks, including excessive latency, a congested network, and privacy leaks, are all addressed by the FL method. In addition, the rich data enables the training of models while combining private data from numerous participants. This research aims to create an FL-based architecture to improve cybersecurity and intrusion detection in IoT networks. In order to assess the effectiveness of the suggested approach, we have utilized well-known cybersecurity datasets along with centralized and federated machine learning models.
This study proposes a distributed parallel processing system, called the Fast Analysis System for remote sensing daTa(FAST), for large-scale satellite image processing and analysis. FAST is a system that designs jobs in vertices and sequences, and distributes and processes them simultaneously. FAST manages data based on the Hadoop Distributed File System, controls entire jobs based on Apache Spark, and performs tasks in parallel in multiple slave nodes based on a docker container design. FAST enables the high-performance processing of progressively accumulated large-volume satellite images. Because the unit task is performed based on Docker, it is possible to reuse existing source codes for designing and implementing unit tasks. Additionally, the system is robust against software/hardware faults. To prove the capability of the proposed system, we performed an experiment to generate the original satellite images as ortho-images, which is a pre-processing step for all image analyses. In the experiment, when FAST was configured with eight slave nodes, it was found that the processing of a satellite image took less than 30 sec. Through these results, we proved the suitability and practical applicability of the FAST design.
클라우드 컴퓨팅은 에지 서버가 동작하는 포그(fog) 레이어가 결합된 에지(edge) 컴퓨팅 아키텍처로 진화하고 있다. 에지 컴퓨팅 아키텍처가 관심을 받는 이유는 짧은 통신 지연으로 실시간 IoT 응용을 지원할 수 있기 때문이다. 이와 동시에 인공지능 기술을 도입한 많은 클라우드 작업 스케줄링 기법들이 제안되었다. 인공지능 기반의 클라우드 작업 스케줄링 기법은 기존 기법보다 더 좋은 성능을 보이지만 스케줄링 시간이 다소 소요된다는 단점이 있다. 이 논문에서는 에지 컴퓨팅 환경에서 분산 딥러닝 학습 기반의 동적 스케줄링 기법을 제안한다. 제안하는 기법은 기존 기법보다 스케줄링 시간이 짧은 장점이 있다. 또한 멀티 에이전트를 통한 분산 딥러닝 학습의 효과성을 보이기 위해 확장적인 실험 환경에서 제안 기법과 기존 인공지능 기법의 성능일 비교 평가하였다. 성능 실험 결과 기존 인공지능 기반 클라우드 작업 스케줄링 기법보다 짧은 스케줄링 시간을 보여 IoT 실시간 응용에 적합함을 보였으며, 확장적인 실험에서도 제안 기법이 완료된 작업의 수에 대하여 우수한 성능을 보임을 증명하였다.
인공지능으로 자동화와 연결성이 극대화되는 4차 산업혁명 시대를 맞이하여 모델의 업데이트를 위한 데이터 수집과 활용의 중요성이 점차 높아지고 있다. 인공지능 기술을 사용하여 모델을 생성하기 위해서는 일반적으로 데이터를 한곳에 모아야 업데이트할 수 있으나, 이런 경우 사용자의 개인정보를 침해할 수 있다. 본 논문에서는 분산 저장된 데이터를 직접 공유하지 않으면서 서로 협력하여 모델을 업데이트할 수 있는 분산형 기계학습 방법인 연합학습을 소개하며, 기존의 서버 없이 참여자들 간의 분산 합의 최적화를 이루는 연구를 소개한다. 또한, Kirkman Triple System을 기반으로 한 패턴 및 그룹을 생성하는 알고리즘을 이용하며, 병렬적인 업데이트 및 통신을 하는 패턴 및 그룹 기반 분산 합의 최적화 알고리즘을 제안한다. 이러한 알고리즘은 기존의 분산 합의 최적화 알고리즘 이상의 프라이버시를 보장하며, 모델이 수렴할 때까지의 통신시간을 감소시킨다.
최근에 분산 시스템과 같이 이기종의 컴퓨팅 환경을 효율적으로 통합하는 방법에 관한 다양한 연구가 진행되고 있다. 네트워크 보안에서는 각 보안 시스템들이 효율적인 침입탐지와 차단을 위해서 분산화되고 있으며 분산된 보안 시스템들을 조정하고 통합하기 위해서 분산인공지능(Distributed Artificial Intelligence)의 개념을 도입하고 있다. 본 논문에서는 분산침입탐지 시스템(Distributed Intrusion Detection System)과 침입차단 시스템(firewall)이 계약망 프로토콜(Contract Net Protocol)에 의해 상호 연동하여 외부 네트워크에서 유입된 패킷의 정보를 통해 침입을 탐지하고 차단하는 네트워크 보안 모델을 설계하였다. 본 연구진이 구성하고 있는 시뮬레이션 환경에서는 네트워크에 존재하는 다양한 보안 모델들을 계층적으로 구성하기 위해 DEVS 방법론을 사용하였다. 보안 시스템의 연동은 계약망 프로토콜에 의해 이루어지는데 네트워크에 분산되어 있는 각각의 전문성을 가진 침입탐지 에이전트들이 중앙 콘솔에 비드(bid)글 제출하고 중앙 콘솔은 최상의 비드를 제출한 에이전트를 선택하여 침입을 탐지하게 된다. 그리고 탐지된 정보를 참조하여 침입차단 시스템은 능동적으로 침입을 차단하게 된다. 이와 같은 모델의 설계를 통해서 기존의 침입탐지 시스템들이 탐지하지 못한 침임을 탐지하게 되고 보안시스템에서의 오류발생빈도를 감소시키며 탐지의 속도를 향상시킬 수 있다.
최근 빅데이터 및 인공지능의 중요성이 커짐에 따라 클라우드 시스템을 효율적으로 설계하고 관리하기 위한 연구가 활발히 진행 중이다. 본 논문은 기술 발전으로 각 개인은 고성능의 컴퓨팅 자원을 소유하고 있지만, 이 자원이 대부분 잉여 자원으로써 낭비되고 있다는 점을 착안하여, 잉여 컴퓨팅 자원을 효율적으로 활용하기 위해 엣지 클라우드 환경에서 분산된 자원의 가용성을 확보하기 위한 방법을 제안한다.
실세계에서 발생하는 복잡한 문제들을 해결하기 위한 노력으로, 다중 에이전트 시스템)Multi-Agent System) 구축에 대한 관심이 높아지고 있다. 다양한 종류의 분산 인공지능 문제들을 에이전트라는 추상적 단위와 에이전트간의 상호작용을 토대로 해결하는 시스템을 개발하기 위하여, 본 연구에서는 다중 에이전트 지향의 소프트웨어를 개발함에 있어 중요한 요소인 조정(Coordination)을 지원하는 아키텍쳐를 제안한다. 문제영역을 분석하고, 다중 에이전트 시스템의 특성을 파악하여 시스템 요소들의 조정을 지원하는 아키텍쳐 공정을 제안한다. 또한, 이를 지능형 교통정보 시스템에 적용하여 본다.
최근 4차 산업혁명기술로 인해 전쟁의 양상까지 진화하고 있다. 그 중에서도 인공지능 기술이 첨단 무기체계와 의사결정시스템에 적용됨에 따라 전쟁 수행 방식을 변모시키고 있다. 미국의 방위고등연구계획국에서 제시한 모자이크전은 사물인터넷, 클라우드 컴퓨팅, 빅데이터, 모바일, 인공지능 기술을 접목시킴으로써 군사적전을 소모중심에서 결심중심으로 전환하고 네트워크화된 전장 상황에 따라 분산 배치된 전력을 적절히 재조합하여 신속하게 전쟁을 수행하는 방식이다. 즉, 획일화된 전투 프로세스에 의해 군사작전을 수행하는 것이 아니라 상황에 따라 분산체계를 통해 다양한 전력을 운용한다는 것이다. 사이버전에서도 인공지능이 사이버공격 기술에 적용됨에 따라 기존의 사이버 킬 체인과 같은 절차적 대응 방식으로는 한계가 있다. 그래서 본 논문에서는 공격 상황에 따라 대응 시스템을 운용할 수 있는 능동형 상황 탄력적 사이버작전을 효과적으로 수행하기 위해서 모자이크전의 수행 방식을 적용하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.