• Title/Summary/Keyword: 분사 각도

Search Result 429, Processing Time 0.028 seconds

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 액적크기 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomize. internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD (Sauter Mean Diameters) distribution by using Planar Liquid Laser Induced Fluorescence technique. The objectives of this research are get a droplet distributions and drop size measurements of each condition and compare with the other flow effects. As the result, This research has been showned that droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects, and normalized distance from the injector exit length(x/d, y/d). There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Investigation of the Mixedness of Fuel and Air in MEMS Gas Turbine Engine According to Change of Fuel Injectors and Equivalence Ratio (연료 분사구 형상 변화 및 당량비 변화에 따른 MEMS 가스터빈 내 연료-공기 혼합에 관한 연구)

  • Hwang, Yu-Hyeon;Jung, Dong-Ho;Kim, Sun-Min;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.835-841
    • /
    • 2010
  • The design of the fuel injector is one of the important operating factors that determine the extent of mixing of air and fuel in an MEMS gas turbine engine. In this study, we consider a system with three inlet ports with each port having multiple injectors. We perform a parametric study by varying the arrangement of fuel injectors and difference of ratio of fuel supply. The results are presented in terms of the premixed flow distribution and equivalence ratio.

Study on Discharge Coefficient Variations of Bi-Swirl Injectors with Working Conditions (작동 조건에 따른 이중 와류 분사기 유량 계수 변화 연구)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.177-180
    • /
    • 2010
  • It has been studied the effect of mixture ratio and chamber pressure on variations of discharge coefficients. Combustion experiments of bi-liquid swirl coaxial injectors were conducted at fuel-rich conditions with liquid oxygen and kerosene. Using two types of injectors for the experiments, characteristics of the discharge coefficient have been identified from variations in a diameter of the fuel nozzle and a momentum ratio along with the change of a LOx spray angle. It is concluded that discharge coefficients do not vary because of no change of flame structures from the fact that the fuel swirl chamber is completely filled up with fuel flow.

  • PDF

Effect of Injection Pressure and Injection Timing on Combustion Characteristics of Spray-Guided Direct-Injection Spark-Ignition Engine under Lean Stratified Combustion Operation (성층희박연소 운전조건에서 분사압과 분사시기에 따른 분무유도식 직접분사 가솔린엔진의 연소특성)

  • Oh, Hee-Chang;Lee, Min-Seok;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.981-987
    • /
    • 2011
  • In this study, single cylinder engine experiment was carried out to investigate combustion characteristics spray guided direct injection spark ignition engine. In the result of engine experiment, it was shown that flammable window of injection timing was existed. The combustion efficiency increased with retarding injection timing, reaching a peak value, subsequent to decrease again. These results were likely due to the effect of ambient pressure on stratified-premixed mixture preparation. 150 bar injection pressure condition and retarded injection timing from the best combustion efficiency injection timing showed the highest IMEP value due to the advanced combustion phase of the maximum combustion efficiency condition. HC emission showed same trend of combustion efficiency, and smoke emission was increased as injection timing was retarded due to the increased locally rich area in the high ambient pressure. NOx emission showed decreasing trend as injection timing was retarded. This is likely due to the maximum in-cylinder temperature was decreased with retarded combustion phase.

Estimation of Secondary Flow Pressure of an Annular Injection Type Supersonic Ejector Using Fabri-Choking (패브리-초킹을 이용한 환형분사 초음속 이젝터 부유동 압력 예측)

  • Kim Sehoon;Jin Jungkun;Kwon Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.405-408
    • /
    • 2005
  • A theoretical analysis is developed for an annular injection type supersonic ejector having a second-throat downstream under the assumption that the Fabri-chocking is placed in mixing chamber. Non-mixing theory is applied to formulate secondary flow pressure in the region between inlet of the mixing chamber and Fabri-chocking. To describe the shock standing at the inlet of the mixing chamber, two dimensional oblique shock relations are used and it is assumed that the shock affects only primary flow at Fabri-chocking plane. In conclusion, it agrees well with experiments in case of small contracting angle of mixing chamber, under 4degrees.

  • PDF

Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling (분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, Yun-Je;Gwon, Dong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles(II) -Blowing Ratio Effect- (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성(II) -분사비의 영향-)

  • Ahn, Joon;Jung, In-Sung;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1131-1139
    • /
    • 2001
  • Experimental results are presented, which describe the effect of blowing ratio on film cooling from two rows of holes with opposite orientation angles. The inclination angle is fixed at 35°, and the orientation angles are set to be 45°for the downstream row, and -45°for the upstream row. The studied blowing ratios are 0.5, 1.0 and 2.0. The boundary layer temperature distributions are measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions are measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux is evaluated from the adiabatic film cooling effectiveness and heat transfer coefficient data. The results show that the investigated geometry provides improved film cooling performance at the high blowing ratios of 1.0 and 2.0.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles: Blowing Ratio Effects (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성 : 분사비의 영향)

  • Ahn, J.;Jung, I.S.;Lee, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.113-118
    • /
    • 2000
  • Experimental results describing the effects of blowing ratio on film cooling from two rows of holes with opposite orientation angles are presented. The inclination angle was fixed at $35^{\circ}$ and the orientation angles were set to be $45^{\circ}$ for downstream row. and $-45^{\circ}$ for upsream row. The studied blowing ratios were 0.5, 1.0 and 2.0. The boundary layer temperature distributions were measured using thermocouple at two downstream loundary layer temperature distributions were measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions were measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux was calculated with the adiabatic film cooling effectiveness and heat transfer coefficient data.

  • PDF

Estimation of Secondary Flow Pressure of an Annular-Injection-Type Supersonic Ejector Using Fabri Choking (패브리 초킹을 이용한 환형분사 초음속 이젝터의 부유동 압력 예측)

  • Kim Sehoon;Kwon Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • A theoretical analysis is developed for an annular-injection-type supersonic ejector having a second-throat downstream the ejector under the assumption that the Fabri choking is placed in mixing chamber. Non mixing theory is applied to formulate secondary flow pressure in the region between inlet of the mixing chamber and Fabri choking. To describe the shock standing at the inlet of the mixing chamber, two dimensional oblique shock relations are used and it is assumed that the shock affects only primary flow at Fabri choking plane. Physical constraint, which is that primary flow pressure and secondary flow pressure are same at Fabri choking plane, is added. In conclusion, it agrees well with experiments in case of small contracting angle of mixing chamber, under 4degrees.

The Effect of Injection Angle and Pressure on Etch of Invar Plate Using Industrial Etch-Nozzle (산업용 에칭노즐을 이용한 Invar합금판의 식각에 분사각과 압력이 미치는 영향)

  • Jeong Heung-Cheol;Kim Dong-Wook;Choi Gyung-Min;Kim Duck-Jool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.47-53
    • /
    • 2006
  • The purpose of this study was to investigate the significant characteristics in spray of industrial etch-nozzle for the design of process. The experiment was carried out with different spray pressure and industrial nozzle in wet etch. The characteristics of liquid spray, such as axial velocity and sauter mean diameter measurements were obtained by PDA. And impact force was calculated from spray characteristics. It was found that the fluid with higher spray pressure resulted in the smaller SMD and the higher droplet velocity and impact force. The depth of etch was increased in case of high spray pressure. In the case of injection angle oscillated between $20^{\circ}$, the result indicated constant effect of etch. The correlation between the spray characteristics and etch ones were analyzed. The depth of etch had good positive correlation with axial velocity and impact force. The result clearly shows that the characteristics in wet etch are strongly related to the spray characteristics with process.