• Title/Summary/Keyword: 분사재

Search Result 222, Processing Time 0.024 seconds

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF

Effect of Blast Cleaning on Fatigue Behavior of Non-load-carrying Fillet Welded Cruciform Joints (블라스트 표면처리가 하중비전달형 십자필렛 용접이음의 피로거동에 미치는 영향)

  • Kim, In Tae;Jung, Young Soo;Kim, Kwang Jin;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • Blast cleaning has been applied in steel bridges for cleaning forged surface and increasing adhesive property of applied coating systems. Blasting is the operation of cleaning or preparing a surface by forcible propelling a stream of abrasive metals against it. Blast cleaning may improve surface geometry and induce compressive residual stress, and eventually may increase fatigue life of weld joints. In this paper, fatigue tests were carried out on three types of non-load-carrying fillet welded cruciform joints, as-welded joints, blast-treated joints, and stress-relieved joints after blasting, in order to investigate effect of blast cleaning on fatigue behavior of the weld joints. By Blast cleaning, the weld toe radius was increased by 29% and compressive residual stress was induced near weld toes. Blast cleaning increased fatigue life and fatigue endurance limit of the weld joints. When the applied stress ranges decreased, the increment in fatigue life became larger. About a 150% increase in fatigue limit could be realized by using blast cleaning.

The Effect of Cetane Number on Exhaust Emissions in Low-temperature Diesel Combustion (저온 디젤 연소에서 세탄가가 배기가스 특성에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2011
  • This study is to investigate the effect of the cetane number in ultra low sulfur diesel fuel on combustion characteristics and exhaust emissions at 1500 rpm and 2.6bar BMEP in low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low-temperature diesel combustion was achieved by adopting external high EGR rate with the strategic injection control without modification of engine components. Test fuels are ultra low sulfur diesel fuel (sulfur less than 12 ppm) with two cetane numbers (CN), i.e., CN30 and CN55. For the CN30 fuel, as a start of injection (SOI) timing is retarded, the duration of an ignition delay was decreased while still longer than $20^{\circ}CA$ for all the SOI timings. In the meanwhile, the CN55 fuel showed that an ignition delay was monotonically extended as an SOI timing is retarded but much shorter than that of the CN30 fuel. The duration of combustion for both fuels was increased as an SOI timing is retarded. For the SOI timing for the minimum BSFC, the CN30 produced nearly zero PM much less than the CN55, while keeping the level of NOx and the fuel consumption similar to the CN55 fuel. However, the CN30 produced more THC and CO than the CN55 fuel, which may come from the longer ignition delay of CN30 to make fuel and air over-mixed.

Improvement of Emission Performance in a 3.3 Liter DI Diesel Engine by Using Dimethyl Ether Fuel (디메틸에테르 연료를 사용하는 3.3리터 디젤기관의 배기성능 개선)

  • Pyo, Young-Dug;Lee, Young-Jae;Kim, Mun-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.178-185
    • /
    • 2007
  • A study is improvement of power and emission in a inline-pump Dr diesel engine by using Dimethyl ether Fuel. Dimethyl ether (DME) is an oxygenated fuel with a cetane number higher than that of diesel oil. It meets the ULEV emission regulation and reduces the smoke to almost zero when used in a diesel engine. But NOx emission is almost same and CO, THC emissions are lower than that of diesel engine. The emissions aren't satisfied the stronger emission regulation in the further. Generally DOC (Diesel Oxidation Catalyst) is used to reduce CO & THC emissions and EGR (Exhaust Gas Recirculation) system is used to reduce NOx emission. Test results showed that the torque and the power with DME were almost same as those of pure diesel oil, but the brake thermal efficiency increased a little. also the BSEC (Brake Specific Energy Consumption) with DME was similar that of diesel. The test results showed that the DOC was the vary effective method to reduce the CO emission in case of Dimethyl Ether Fuel in diesel engine. But, THC emission is showed a little reduction rates. Also EGR system was the very effective method to reduce the NOx emission in case of Dimethyl Ether Fuel in diesel engine.

Ramjet Mode Combustion Test for a Dual-Mode Ramjet Engine Model with a Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진 모델의 램젯 모드 연소 시험)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Chun-taek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.83-90
    • /
    • 2016
  • Ramjet mode combustion test was performed for a dual-mode ramjet engine model. The engine model consists of an air intake, a combustor and a nozzle. The combustor in the model has a large backward-facing step, designed to be used as a part of a rocket-based combined cycle engine. The test was performed at the flight speed of Mach 5 and the altitude of 24 km. Strong combustion was established only when the fuel was injected from both of the bottom-side and cowl-side wall. When the total fuel stoichiometric ratio was 1.0, distributed as 0.5 on the cowl side and 0.5 on the bottom side, the flow became subsonic at some portion in the combustor by thermal choking, i.e., ramjet mode was established for this condition.

Visualization of Transient Ignition Flow-field in a 50 N Scale N2O/C2H5OH Thruster (50 N급 아산화질소/에탄올 추력기의 점화 과도 유동장 가시화)

  • Kim, Dohun;Park, Jaehyeon;Yu, Myunggon;Lee, Kyungeun;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • The combustion flowfield at the near-injector region of a 50 N scale $N_2O/C_2H_5OH$ thruster was visualized using shadowgraph technique. The explosive ignition was occurred at the design spray condition, and the expanding combustion gas quenched the flame immediately. Approximately after 83 ms from the initial ignition, the propellant spray was re-ignited, and the flame was stabilized after 23 ms elapsed. In the increased oxidizer flow rate condition, the transient pressure at the moment of ignition was smoother than explosive ignition, and the blow down phenomenon was not appeared in the same operating sequence. In addition, the flame was stabilized within 17 ms, and it is caused by improved propellants mixing before ignition.

Explosive Accidents and Safe Handling of an Experimental Liquid Rocket Engine Using Nitrous Oxide as Oxidizer (아산화질소를 산화제로 사용하는 실험용 액체로켓의 폭발사례 및 안전사용방안)

  • Choi, Songyi;Park, Sukyoung;Lee, Donggun;Kim, Dohun;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.46-54
    • /
    • 2015
  • Nitrous oxide is known as green and safe propellant, and can be supplied by its own vapor pressure. So, many liquid propulsion research institutes and university laboratories use nitrous oxide as oxidizer of experimental liquid rocket engine. However, the unknown explosions occurred twice during hot fire experiments using subscale ethanol/nitrous oxide thruster. In this paper, we surmised that the explosions were caused by the decomposition of nitrous oxide in the injector body and the recondensation of nitrous oxide. Improvement and the safe handling methods are suggested.

Study of the Performance of a Dry Cleaning Method for Polluted Ballast Gravel of Railroad Fields (철도부지 오염도상자갈의 건식 정화 기술 성능 연구)

  • Cho, Youngmin;Park, Duckshin;Kwon, Tae-Soon;Lee, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.552-557
    • /
    • 2015
  • Ballast gravel in a railroad field is often polluted by grease and heavy metals. In this paper, the performances of a dry cleaning method for polluted ballast gravel in which pollutants on the gravel surface can be physically removed was extensively studied. A polluted ballast cleaning device able to shoot emery blasting media onto the surface using compressed air was prepared. Polluted ballast gravel was put into this device for cleaning, with the treatment time varied from 1 to 10 min. The cleaning efficiency of the total petroleum hydrocarbons and heavy metals were studied. The total petroleum hydrocarbon removal efficiency was 70-80% for gravels sampled from a locomotive waiting line, while it was 40-60% for gravels sampled from a turnout area. The heavy metal removal efficiency exceeded 90% for copper and lead, while it was 65-80% for nickel and zinc. This system was found to be effective for the remediation of polluted ballast gravels.

Development of Glass Fiber Composite Material to Extend the Life of Fly Ash Transport Pipe: Wear Test (비회 운송관의 수명연장을 위한 유리섬유 복합재의 개발: 내마모성 평가)

  • Jeong, Gyu-Sang;Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • In this study, a fiber reinforced plastic (FRP) pipe with superior wear resistance was developed to replace the fly ash pipe of cast iron. Wear test was performed with various combinations of SiC filler and resin materials of unsaturated polyester, vinylester, epoxy, and phenol. Test results of ASTM D4060 showed the optimal combinations of resin, filler size, and resin/filler ratios. Test results of comparison between FRP and cast iron showed the possibility to replace cast iron pipe with the FRP pipe. Field test executed to compare the wear resistance between cast iron pipe and developed FRP pipe showed the superiority of the FRP pipe.

A Case Studty on the Ground Reinforcement and Waterproofing Effect of Weathering and Fault Zone by Special Injection Tip Equipment Using Microcement Type (특수주입선단장치에 의한 마이크로시멘트계 약액주입의 풍화대, 단층파쇄대의 지반보강 및 차수효과 사례연구)

  • Do, Jongnam;Jung, Jongju;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2009
  • A grouting method has been widely used in construction of large-scale structure to reduce permeability and reinforce the ground. If cement and grout material were not mixed well in the injection tip equipment, an opposite flow and interception state of the chemical grouting can occur. McG (Multi-mixing counterflow prevented Grouting, McG) method installed a special grouting device to allow better mixing of the grouting material(above fineness $6,000cm^2/g$) and prevent backward flow. The block of nozzle also diversify powder rate of cement. YSS (Youngil Special Silicate, YSS) that lowers $Na_2O$ and thereby increases durability was developed by gel-forming reaction material. The seepage state and unconfined compressive strength of the injection material using the special injection tip equipment was tested in this study. The results of this study showed that the uniaxial compressive strength, permeability, N-value, TCR and RQD were improved by this method. Engineering characteristics obtained by the special injection tip method will be compared with those by the other method through various field tests from now on.

  • PDF