대안 모델링에 대한 관심이 커진 이후 데이터 기반의 기계학습을 이용하여 비선형 화학 공정을 모사하고자 하는 연구가 지속되고 있다. 그러나 기계 학습 모델의 black box 성질로 인하여 모델의 해석 가능성에 한계는 산업 적용에 걸림돌이 되고 있다. 따라서, 모델의 정확도가 보장된 상태에서 해석력을 부여하는 개념인 설명 가능한 인공지능(explainable artificial intelligence, XAI)을 이용하여 화학 공정 분석을 시도하고자 한다. 기존의 화학 공정 민감도 분석이 변수의 민감도 지수를 계산하고 순위를 매기는 데에 그쳤다면, XAI를 이용하여 전역적, 국소적 민감도 분석뿐만 아니라 변수들 간의 상호작용에 대하여 분석하여 데이터로부터 물리적 통찰을 얻어내는 방법론을 제안한다. 사례 연구의 대상공정인 암모니아 합성 공정에 대하여 첫번째 반응기로 향하는 흐름에 대한 예열기(preheater)의 온도, 세 반응기로 향하는 cold-shot의 분배 비율을 공정 변수로 설정하였다. Matlab과 Aspen plus를 연동하여 공정 변수를 바꿔가면서 암모니아의 생산량과 세 반응기의 최고 온도에 대한 데이터를 얻었으며, tree 기반의 모델들을 훈련시켰다. 그리고 성능이 좋은 모델에 대하여 XAI 기법 중 하나인 SHAP 기법을 이용하여 민감도 분석을 수행하였다. 전역적 민감도 분석 결과, 예열기의 온도가 가장 큰 영향을 미쳤으며 국소적 민감도 분석 결과에서 생산성 향상 및 과열 방지를 위한 공정 변수들의 범위를 규정할 수 있었다. 이처럼 화학 공정의 대안 모델을 구축하고 설명 가능한 인공지능을 이용해 민감도 분석을 진행하는 방법론을 통해 공정 최적화에 대한 정량적, 정성적 피드백을 제안하는 데 도움을 줄 것이다.
소프트웨어 산업에서 고신뢰성의 소프트웨어 시스템을 생산하고 그들의 성능을 평가하는 일이 중요한 관심사항이 되어왔다. 소프트웨어의 평가는 주로 소프트웨어 시스템의 신뢰성과 성능의 양쪽 관점에서 수행되어져 왔다. 소프트웨어신뢰도는 소프트웨어 테스팅 단계 동안에 한 고정된 시간구간에서 소프트웨어 오류가 발생하지 않을 확률을 말한다. 이들 이론적인 소프트웨어 신뢰성 모델들은 가끔 어떤 특정한 테스팅 구간에서는 하나의 어떤 소프트웨어 오류가 발생하여 소프트웨어 오류를 디버깅하여도 소프트웨어 고장율이 불완전 디버깅. 비정상적인 소프트웨어 수정 등등의 원인에 의해서 감소되어 실제적인 소프트웨어 테스팅 단계에서는 적당하지 않을 수도 있다. 이와 같이 부적당한 소프트웨어 테스팅 구간은 하나의 이상치 스테이지로 고려되어질 필요성이 있다. 이 이상치 소프트웨어 테스팅 구간에서만은 장애요인에 의해서 소프트웨어 신뢰도가개선이 되지 않는다고 가정한다. 이와 같은 가정아래서본 연구에서는 우선 소프트웨어 신뢰도 성장 모형에서 가장 많이 활용되는 Jelinski-Moranda모델을 변경하여 하나의 미지정된 이상치 소프트웨어 테스팅 구간을 고려하여 베이지안 방법에 의한 소프트웨어 신뢰도를 모형화하고 그 모형에 따른 소프트웨어 신뢰성 측도들을 추정하는 절차를 연구하였다. 그리고 제곱오차 결손함수의 조건아래 사전정보를 가정한 소프트웨어 신뢰도 모수의 베이즈 추정량을 제안하고, 제안된 소프트웨어 신뢰도 성장 모델을 하나의 이상치 소프트웨어 테스팅 구간상에 고려된 장애 모수의 값에 따라서 정확성, 바이어스, 추세 및 노이즈 등의 정량적인 평가 측도들을 사용하여 컴퓨터 시뮬레이션을 통하여 평가하였다.7배 높은 것으로 나타났다. 국내 건강기능식품공전 중 클로렐라 및 스피루리나제품의 엽록소 a b, 및 페오포르바이드 항목의 규격검사를 본 연구의 동시분석법으로 개정함으로써 각 성분 함량의 정량, 분석시간의 단축 및 비용절감 둥 시험방법을 크게 개선할 수 있을 것으로 기대된다. 잔주름 개선에 효과를 볼 수 있을 것으로 생각된다.른 Phenoxyethanol의 유/수 분배 측정 결과, Polarity가 낮은 oil에서는 $70\%$ 이상의 Phenoxyethanol이 수상에 존재한 반면, polarity가 높은 oil에서는 약 $70 {\~} 90\%$의 phenoxyethanol이 유상에 존재하였다. 또한, 미생물에 대한 항균력도 phenoxyethanol이 수상에 많이 존재할수록 증가하는 경향을 나타내었다. 따라서, 제형 내 oil tomposition을 변화시킴으로써 phenoxyethanol의 사용량을 줄일 수 있을 뿐만 아니라, 피부 투과를 감소시켜 보다 피부 자극이 적은 저자극 방부시스템 개발이 가능하리라 보여 진다. 첨가하여 제조한 curd yoghurt는 저장성과 관능적인 면에서 우수한 상품적 가치가 인정되는 새로운 기능성 신제품의 개발에 기여할 수 있을 것으로 사료되었다. 여자의 경우 0.8이상이 되어서 심혈관계 질환의 위험 범위에 속하는 수준이었다. 삼두근의 두겹 두께는 남녀 각각 $20.2\pm8.58cm,\;22.2\pm4.40mm$으로 남녀간에 유의한 차이는 없었다. 조사대상자의 식습관 상태는 전체 대상자의 $84.4\%$가 대부분이 하루 세끼 식사를 규칙적으로 하고 있었으며
컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.
EU의 REACH 제도 도입에 따라 각종 화학물질에 대한 독성 및 활성 정보 확보를 위해 화학물질의 분자구조 정보를 기반으로 화학물질의 독성 및 활성을 예측하는 정량적구조활성관계(QSAR)에 대한 연구가 최근 활발히 진행되고 있다. QSAR 모델에 사용되는 분자표현자는 매우 다양하기 때문에 화학물질의 물성 및 활성을 잘 표현할 수 있는 주요한 분자표현자를 선택하는 과정은 QSAR 모델 개발에 있어 중요한 부분이다. 본 연구에서는 화학물질의 분자구조 정보를 나타내는 주요 분자표현자의 통계적 선택 방법과 부분최소자승법(Partial least square: PLS) 기반의 새로운 QSAR 모델을 제안하였다. 제안된 QSAR 모델은 130종의 폴리염화바이페닐(Polychlorinated biphenyl: PCB)에 대한 분배계수(log P)와 14종의 PCBs에 대한 반수 치사 농도(Lethal concentration 50%: $LC_{50}$) 예측에 사용되고, 제안된 QSAR 모델 예측 정확도는 기존의 OECD QSAR Toolbox에서 제공하는 QSAR 모델과 비교하였다. 관심 화학물질의 분자표현자와 활성정보 간의 높은 상관관계를 갖는 주요 분자표현자를 선별하기 위해서, 상관계수(r)와 variable importance on projections (VIP)기법을 적용하였으며, 화학물질의 독성 및 활성정보를 예측하기 위해 선별된 분자표현자와 활성정보를 이용해 부분최소자승법(PLS)를 사용하였다. 회귀계수($R^2$)와 prediction residual error sum of square (PRESS)을 이용한 성능평가결과, 제안된 QSAR 모델은 OECD QSAR Toolbox의 QSAR 모델보다 PCBs의 log P와 $LC_{50}$에 대하여 각각 26%, 91% 향상된 예측력을 나타내었다. 본 연구에서 제안된 계산독성학 기반의 QSAR 모델은 화학물질의 독성 및 활성정보에 대한 예측력을 향상시킬 수 있고 이러한 방법은 유독 화학물질의 인체 및 환경 위해성 평가에 기여할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.