• Title/Summary/Keyword: 분무열분해 공정

Search Result 61, Processing Time 0.024 seconds

Synthesis of Fine Ba-Nd-Ti-O Powders by Spray Pyrolysis from Spray Solution with Sucrose (수크로스 함유 분무용액으로부터 분무열분해 공정에 의한 미세 Ba-Nd-Ti-O 분말 합성)

  • Ko, You-Na;Jung, Dae-Soo;Koo, Hye-Young;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.142-147
    • /
    • 2010
  • Nano-sized $BaNd_2Ti_5O_{14}$ powders were prepared by the spray pyrolysis process. Sucrose used as the organic additive enabled the formation of nano-sized $BaNd_2Ti_5O_{14}$ powders. The powders prepared from the spray solution without sucrose had a spherical shape, dense structure and micron size before and after calcination. However, the precursor powders prepared from the spray solution with sucrose had a large size, and hollow and porous morphology. The precursor powders had an amorphous crystal structure because of the short residence time of the powders inside the hot wall reactor. The complete decomposition of sucrose did not occur inside the hot wall reactor. Therefore, the precursor powders obtained from the spray solution with sucrose of 0.5M had a carbon content of 39.2wt.%. The powders obtained from the spray solution with sucrose of 0.5M had a slightly aggregated structure of nano-sized primary powders of $BaNd_2Ti_5O_{14}$ crystalline phase after calcination at $1000^{\circ}C$. The calcined powders turned into nano-sized $BaNd_2Ti_5O_{14}$ powders after milling. The mean size of the $BaNd_2Ti_5O_{14}$ powders was 125 nm.

Effect of Pyrolysis temperature on TiO2 Nanoparticles Synthesized by a Salt-assisted Ultrasonic Spray Pyrolysis Process (염 보조 초음파 분무 열분해 공정으로 합성된 TiO2 나노입자의 특성에 열분해 온도가 미치는 영향)

  • Yoo, Jae-Hyun;Ji, Myeong-Jun;Park, Woo-Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.237-242
    • /
    • 2019
  • In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate ($NaNO_3$) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide ($TiO_2$) particles. The added $NaNO_3$ prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing $NaNO_3$ and NaF from the secondary particles, which consist of the salts and $TiO_2$ nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized $TiO_2$ nanoparticles have a size of approximately 2-10 nm a bandgap energy of 3.1-3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized $TiO_2$ nanoparticles.

Photoluminescence Characteristics of Fine-sized Gd2O3:Eu Phosphor Powders Prepared by Spray Pyrolysis (분무열분해 공정에 의해 합성된 미세 Gd2O3:Eu 형광체의 발광 특성)

  • Jung, Dae Soo;Koo, Hye Young;Lee, Sang Ho;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1075-1080
    • /
    • 2008
  • Fine-sized $Gd_2O_3:Eu$ phosphor powders were prepared by post-treatment of the precursor powders with hollow shape obtained by spray pyrolysis from the spray solution with citric acid and flux material. Citric acid enabled the synthesis of fine-sized phosphor powders after post-treatment by increasing the hollowness of the precursor powders. The phosphor powders prepared from the spray solution without citric acid had several microns size. Flux materials increased the mean sizes of the phosphor powders. However, flux materials improved the photoluminescence intensities of the phosphor powders under ultraviolet. $Li_2CO_3$ as the flux material was appropriate to prepare the fine-sized $Gd_2O_3:Eu$ phosphor powders with high photoluminescence intensity. The phosphor powders below 3 wt% $Li_2CO_3$ of phosphor had submicron sizes after post-treatment temperatures of $1,050^{\circ}C$ and $1,150^{\circ}C$. The photoluminescence intensity of the phosphor powders post-treated at $1,150^{\circ}C$ was 124% of that of the phosphor powders post-treated at $1,050^{\circ}C$.

Synthesis and Optical Property of a TiOF2 Powder via an Ultrasonic Spray Pyrolysis Process (초음파 분무 열분해 공정을 이용한 TiOF2 분말의 합성과 광학적 성질)

  • Hwangbo, Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.307-310
    • /
    • 2016
  • $TiOF_2$, which has remarkable electrochemical and optical properties, is used in various applications such as Li-ion batteries, electrochemical displays, and photocatalysts. In addition, it is possible to utilize the template which is allowed to synthesize fluorine doped $TiO_2$ powders with hollow or faceted structures. However, common synthesis methods of $TiOF_2$ powders have some disadvantages such as the use of expensive and harmful precursors and batchtype processes with a limited production scale. In this study, we report a synthetic route for preparing $TiOF_2$ powders by using an inexpensive and harmless precursor and a continuous ultrasonic spray pyrolysis process under a controlled atmosphere to address the aforementioned problems. The synthesized powder has an average size of $1{\mu}m$, a spherical shape, a pure $TiOF_2$ phase, and exhibits a band-gap energy of 3.2 eV.

Synthesis and Optical Property of BaTiO3 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process (염 보조 초음파 분무 열분해 공정을 이용한 BaTiO3 나노입자의 합성과 광학적 성질)

  • Hwangbo, Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate ($BaTiO_3$) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for $BaTiO_3$ nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing $BaTiO_3$ nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of $BaTiO_3$ nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.

Synthesis and Optical Property of GaN Powder Using an Ultrasonic Spray Pyrolysis Process and Subsequent Nitridation Treatment (초음파 분무 열분해 공정과 질화처리를 이용한 GaN 분말의 합성과 광학적 성질)

  • Ji, Myeong-Jun;Yoo, Jae-Hyun;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.482-486
    • /
    • 2018
  • Despite numerous advances in the preparation and use of GaN, and many leading-edge applications in lighting technologies, the preparation of high-quality GaN powder remains a challenge. Ammonolytic preparations of polycrystalline GaN have been studied using various precursors, but all were time-consuming and required high temperatures. In this study, an efficient and low-temperature method to synthesize high-purity hexagonal GaN powder is developed using sub-micron $Ga_2O_3$ powder as a starting material. The sub-micron $Ga_2O_3$ powder was prepared by an ultrasonic spray pyrolysis process. The GaN powder is synthesized from the sub-micron $Ga_2O_3$ powder through a nitridation treatment in an $NH_3$ flow at $800^{\circ}C$. The characteristics of the synthesized powder are systematically examined by X-ray diffraction, scanning and transmission electron microscopy, and UV-vis spectrophotometer.

Nano-sized Gd2O3:Eu Phosphor Prepared by Spray Pyrolysis (분무열분해 공정에 의해 합성되어진 나노 크기 Gd2O3:Eu형광체)

  • Kim, Eun-Joung;Kang, Yun-Chan;Park, Hee-Dong;Ryu, Seung-Kon
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.771-775
    • /
    • 2002
  • $Gd_2$$O_3$:Eu phosphor particles with nano-sized and non-aggregation characteristics were prepared by spray pyrolysis using the spray solution containing polymeric precursor and $Li_2$$CO_3$ flux material. Nano-sized $Gd_2$$O_3$:Eu phosphor particles had higher brightness than the commercial $Y_2$$O_3$:Eu phosphor particles. The $Gd_2$$O_3$:Eu phosphor particles had nano-size and non-aggregation characteristics after heat-treatment at $1000^{\circ}C$ when the addition amount of $Li_2$$CO_3$ flux was 1 wt.% and 3 wt.%. The mean size of particles were 200 nm and 400 nm when the amount of flux was 1 wt.% and 3 wt.%, respectively. The prepared phosphor particles had higher photoluminescence intensity than that of the commercial product regardless of the content of$ Li_2$$CO_3$ flux and had the maximum brightness when the content of flux was 5 wt %. The photoluminescence intensity of the nano-sized $Gd_2$$O_3$:Eu phosphor particles containing 3 wt.% $Li_2$$CO_3$ flux was 125% in comparison with that of the micron-sized $Y_2$$O_3$:Eu commercial product.

Transition of Gd2O3:Eu Phosphor to GdBO3:Eu Phosphor with Boron Concentration in the Spray Pyrolysis (분무열분해 공정에서 붕소 농도에 따른 Gd2O3:Eu 형광체의 GdBO3:Eu 형광체로의 전환)

  • Koo, Hye-Young;Jung, Dae-Soo;Ju, Seo-Hee;Hong, Seung-Kwon;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.163-167
    • /
    • 2006
  • The transition of europium-doped gadolinium oxide phosphor to gadolinium borate phosphor with the concentration of boron in the spray pyrolysis was investigated. The particles prepared from spray solution below 10 wt% boric acid of prepared phosphor had crystal structure of $Gd_2O_3:Eu$ phosphor, in which the crystallinity of the particles decreased with increasing the boron concentration. A single phase $GdBO_3:Eu$ phosphor particles were prepared from spray solution above 50 wt% boric acid of prepared phosphor. The phosphor particles prepared from spray solution with 20 wt% boric acid of prepared phosphor had no XRD peaks of $Gd_2O_3:Eu$ and $GdBO_3:Eu$ Therefore the phosphor particles prepared from spray solution with 20 wt% boric acid of prepared phosphor had the lowest photoluminescence intensity under ultraviolet and vacuum ultraviolet. $GdBO_3:Eu$ and $Gd_2O_3:Eu$ phosphor particles prepared from spray solutions with proper concentrations of boric acid had good photoluminescence intensity under vacuum ultraviolet. The morphology of the phosphor particles were strongly affected by the concentrations of boric acid added into spray solution.

Preparation of Nanoporous Silica Particles containing Various Pore Sizes from Silicic Acid by Spray Pyrolysis (분무열분해 공정에 의한 규산수용액으로부터 다양한 미세기공을 갖는 실리카 나노다공체 제조)

  • Kim, Sun Kyung;Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.65-72
    • /
    • 2016
  • Nanoporous $SiO_2$ particles containing different pore volume and size were prepared from silicic acid by a spray pyrolysis. The pore size, pore volume and particle size could be controlled with varying the precursor concentration, reaction temperature, and amount of organic templates such as Urea and poly ethylene glycol (PEG). The pore size distribution, pore volume and specific surface area of as-prepared particles were analyzed by BET and BJH methods, and the average particle sizes were measured by a laser diffraction method. The nanoporous $SiO_2$ particles ranged $0.6-0.9{\mu}m$ in diameter were successfully synthesized and the average particle size increased as the silicic acid concentration increased. The morphology of nanoporous $SiO_2$ particles was spherical and pores ranged 1 - 40 nm in diameter were measured in the particles. In case of Urea added into silicic acid, it showed no much difference in the morphology, pore size and pore volume at different Urea concentration. On the other hand, when PEG was added, it was clearly observed that pore diameter and pore volume of the particles surface increased with respect to PEG concentration.

The Effect of Preparation Conditions on the Characteristics of Co3O4 Particles Prepared by Spray Pyrolysis (합성 조건이 분무열분해 공정에 의해 합성되는 Co3O4 분말의 특성에 미치는 영향)

  • Kim, Do-Youp;Ju, Seo-Hee;Koo, Hye-Young;Hong, Seung-Kwon;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2006
  • [ $Co_3O_4$ ] particles with non-aggregation characteristics were prepared by various conditions such as preparation temperature, flow rate of carrier gas, and concentration of spray solution using spray pyrolysis. The morphology and crystallinity of the preformed particles obtained by spray pyrolysis at various conditions affected the mean size and morphology of the post-treated $Co_3O_4$ particles. The preformed particles with hollow and porous morphology obtained from spray solution with citric acid and ethylene glycol turned to $Co_3O_4$ particles with nano size, regular morphology and non-aggregation characteristics after post-treatment at $800^{\circ}C$. On the other hand, the preformed particles obtained by the preparation conditions of short residence time of particles inside hot wall reactor and high reactor temperature turned to $Co_3O_4$ particles with aggregated morphology after post-treatment. The mean crystallite size and particle size of the $Co_3O_4$ particles prepared from optimum preparation conditions were 47 nm and 210 nm at post-treatment temperature of $800^{\circ}C$.