DOI QR코드

DOI QR Code

Synthesis and Optical Property of GaN Powder Using an Ultrasonic Spray Pyrolysis Process and Subsequent Nitridation Treatment

초음파 분무 열분해 공정과 질화처리를 이용한 GaN 분말의 합성과 광학적 성질

  • Ji, Myeong-Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Yoo, Jae-Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 지명준 (서울과학기술대학교 신소재공학과) ;
  • 유재현 (서울과학기술대학교 신소재공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2018.12.04
  • Accepted : 2018.12.19
  • Published : 2018.12.28

Abstract

Despite numerous advances in the preparation and use of GaN, and many leading-edge applications in lighting technologies, the preparation of high-quality GaN powder remains a challenge. Ammonolytic preparations of polycrystalline GaN have been studied using various precursors, but all were time-consuming and required high temperatures. In this study, an efficient and low-temperature method to synthesize high-purity hexagonal GaN powder is developed using sub-micron $Ga_2O_3$ powder as a starting material. The sub-micron $Ga_2O_3$ powder was prepared by an ultrasonic spray pyrolysis process. The GaN powder is synthesized from the sub-micron $Ga_2O_3$ powder through a nitridation treatment in an $NH_3$ flow at $800^{\circ}C$. The characteristics of the synthesized powder are systematically examined by X-ray diffraction, scanning and transmission electron microscopy, and UV-vis spectrophotometer.

Keywords

References

  1. W. Han, S. Fan, Q. Li and Y. Hu: Science, 277 (1997) 1287. https://doi.org/10.1126/science.277.5330.1287
  2. J. K. Sprenger, A. S. Cavanagh, H. Sun, K. J. Wahl, A. Roshko and S. M. George: Chem. Mater., 28 (2016) 5282. https://doi.org/10.1021/acs.chemmater.6b00676
  3. W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki and O. Shimomura: Nat. Mater., 2 (2003) 735. https://doi.org/10.1038/nmat1003
  4. R. Dwilinski, R. Doradzinski, J. Garczynski, L.P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi and H. Hayashi: J. Cryst. Growth, 310 (2008) 3911. https://doi.org/10.1016/j.jcrysgro.2008.06.036
  5. Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami and K. Katayama: Appl. Phys. Express, 2 (2009) 082101. https://doi.org/10.1143/APEX.2.082101
  6. Y. I. Kim, J. Li, J. P. Zhang and R. Seshadri: Solid State Sci., 13 (2011) 216. https://doi.org/10.1016/j.solidstatesciences.2010.11.017
  7. Q. Bao, H. Sawayama, T. Hashimoto, F. Sato, K. Hazu, Y. Kagamitani, T. Ishinabe, M. Saito, R. Kayano, D. Tomida, K. Qiao, S. F. Chichibu, C. Yokoyama and T. Ishiguro: CrystEngComm., 14 (2012) 3351. https://doi.org/10.1039/c2ce06669f
  8. C. M. Balkas and R. F. Davis: J. Am. Ceram. Soc., 79 (1996) 2309. https://doi.org/10.1111/j.1151-2916.1996.tb08977.x
  9. W. S. Jung: Mater. Lett., 57 (2002) 110. https://doi.org/10.1016/S0167-577X(02)00713-9
  10. L. Grocholl, J. Wang and E. G. Gillan: Chem. Mater., 13 (2001) 4290. https://doi.org/10.1021/cm010342j
  11. K. Sardar, M. Dan, B. Schwenzer and C. N. R. Rao: J. Mater. Chem., 15 (2005) 2175 https://doi.org/10.1039/b502887f
  12. H. Wu, J. Hunting, K. Uheda, L. Lepak, P. Konkapaka, F. J. DiSalvo and M. G. Spencer: J. Cryst. Growth, 279 (2005) 303. https://doi.org/10.1016/j.jcrysgro.2005.02.040
  13. G. L. Messing, S. C. Zhang, G. V. Jayanthi: J. Am. Ceram. Soc., 76 (1993) 2707. https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
  14. J. H. Bang and K. S. Suslick: Adv. Mater., 22 (2010) 1039. https://doi.org/10.1002/adma.200904093
  15. A. B. Murphy: Sol. Energy Mater. Sol. Cells, 91 (2007) 1326. https://doi.org/10.1016/j.solmat.2007.05.005
  16. T. Oshima, T. Nakazono, A. Mukai and A. Ohtomo: J. Cryst. Growth, 359 (2012) 60. https://doi.org/10.1016/j.jcrysgro.2012.08.025
  17. M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo and Z. Mi: Nat. Commun., 5 (2014) 3825. https://doi.org/10.1038/ncomms4825
  18. P. Kubelka and F. Munk: Z. Tech. Phys., 12 (1931) 593.