• Title/Summary/Keyword: 분말 가압 성형

Search Result 45, Processing Time 0.029 seconds

Dry Compaction of Nanosize TiO$_2$Powders (산화 티타늄 나노분말의 건식가압성형)

  • 이해원;임건자;전형우;박종구;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.12
    • /
    • pp.1146-1149
    • /
    • 2000
  • 표면윤활층 처리와 540 MPa 까지의 진공가압성형을 통하여 나노 TiO$_2$과립 분말의 가압성형공정에서 나타나는 접합압력을 확인하였으며, 접합압력 상하에서 제조된 시편의 소결특성을 $700^{\circ}C$ 등온 소결을 통하여 분석하였다. 접합압력 이상에서 가압성형한 성형체를 $700^{\circ}C$에서 48시간 소결하여 96%의 높은 소결밀도와 112 nm의 평균 결정립 크기를 얻었다.

  • PDF

Design of ceramics powder compaction process parameters (Part Ⅰ : Finite element analysis) (세라믹스 분말 가압 성형 공정 변수 설계(1부: 유한요소 해석))

  • Jung S. C.;Keum Y. T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • In order to simulate the powder compaction process and to assess the effects of packing randomness and particle arrangement 2-dimensional model of rod array compaction using quasi-random multiparticle array is introduced. The elastic modulus of porous ceramics is computed by the homogenization method. With 3 Al₂O₃ and 3 Al particles the compaction processes associated with the porosities are simulated by the explicit finite element method, based on the elastic modulus found by the homogenization method. The simulation results are compared with both previous analytical ones and experimental measurements. Finally, in order to find the relationship between the friction coefficient of powder particles and the relative density, the sensitivity analysis is performed.

Production Process of Foamed Glass by Compressive Shaping (가압성형 방법에 의한 발포유리의 제조공정)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.239-246
    • /
    • 2013
  • Principle of foamed glass manufacturing process first starts with putting vitreous material powder into a mold. After the foaming calcination, foamed body should be annealed after separation from the mold. For this reason, existing manufacturing process could not be a continuous type process. In this study, in order to develop a continuous production process of foamed glass, the possibility of new foam glass manufacturing process was investigated by foaming calcination of the compact body obtained from compression-molding of vitreous raw materials in stead of using a mold. Through the experimental results of the foaming calcination of the compact body with adding various foaming agents such as $Na_2CO_3$, $CaCO_3$ and petroleum coke, into hydrated soda-lime vitreous raw materials, it was shown that developing a continuous process without using any molds for manufacturing foamed glass would be possible.

Design of ceramics powder compaction process parameters (Part Ⅱ : Optimization) (세라믹스 분말 가압 성형 공정 변수설계(2부: 최적화))

  • Kim J. L.;Keum Y. T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • In this study, the process parameters in ceramics powder compaction are optimized for getting high relative densities of ceramic products. To find optimized parameters, the analytic models of powder compaction are firstly prepared by 2-dimensional rod arrays with random green densities using a quasi-random multiparticle array. Then, using finite element method, the changes in relative densities are analyzed by varying the size of Al₂O₃ particle, the amplitude of cyclic compaction, and the coefficient of friction, which influence the relative density in cyclic compactions. After the analytic function of relative density associated process parameters are formulated by aid of the response surface method, the optimal conditions in powder compaction process are found by the grid search method. When the particle size of Al₂O₃ is 22.5 ㎛, the optimal parameters for the amplitude of cyclic compaction and the coefficient of friction are 75 MPa and 0.1103, respectively. The maximum relative density is 0.9390.

Dry Pressing Behavior of Nanosized $Al_2$$O_3$Powders (나노 $Al_2$$O_3$분말의 건식 가압성형 거동)

  • Lee, Hae-Weon;Lee, Jong-Ho;Jun, Hyung-Woo;Ahn, Jae-Pyoung;Park, Jong-Ku;Moon, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1071-1077
    • /
    • 2000
  • 표면 윤활층을 가진 나노 알루미나를 진공중에서 가압성형함으로써 결함발생없이 높은 충전압력을 가할 수 있었으며, 높은 밀도, 미세기공, 좁은 기공경 분포를 가지는 성형체를 제조할 수 있었다. 윤활제의 화학 및 기계적 특성에 의하여 변하는 모세관 현상을 조정함으로써 충전효율을 증대하고 결함발생을 억제할 수 있다. 나노분말의 소결에서도 성형 미세구조의 균일도가 치밀화 거동에 여전히 지배적인 역할을 하였다.

  • PDF

Low Temperature Fireable Borosilicate/Si3N4 Microcomposite Substrates

  • 박인용
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 1996
  • 저유전 상수와 저온 소성이 가능한 기판 재료의 제조를 위해 sol-gel법으로 borosilicate/Si3N4 Microcomposite 분말을 합성하였다. Microcomposite 분말의 조성은 borosilicate/Si3N4의 부피비로 50/50, 60/40 및 70/30을 선택하였다. Microcomposite의 성형 체는 건식가압법으로 성형하여 700~100$0^{\circ}C$에서 2시간 동안 소결하였다. Microcomposite 의 미세구조는 SEM과 TEM으로 관찰하였고 소결체의 유전 상수와 밀도를 측정하였다. Microcomposite은 85$0^{\circ}C$ 근처에서 치밀화가 일어나고 유전상수는 약 4.2였다.

Multi-scale Simulation of Powder Compaction Process and Optimization of Process Parameters (분말가압 성형공정의 멀티스케일 시뮬레이션과 공정변수 최적화)

  • Shim, J.W.;Shim, J.G.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.344-347
    • /
    • 2007
  • For modeling the non-periodic and randomly scattered powder particles, the quasi-random multi-particle array is introduced. The multi-scale process simulation, which enables to formulate a regression model with a response surface method, is performed by employing a homogenization method. The size of ${Al_2}{O_3}$ particle, amplitude of cyclic compaction pressure, and friction coefficient are considered as optimal process parameters. The optimal conditions of process parameters providing the highest relative density are finally found by using the grid search method.

  • PDF

Development of Al-SiC Metal Matrix Composites by using Hot Press Forming Technologies (열간가압성형기술을 이용한 Ai-SiC 금속기 복합재료 개발)

  • Jeon, Ho-Jin;Kim, Tae-Won
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.9-17
    • /
    • 2007
  • Powder metallurgy has been employed for the development of SiC particle reinforced aluminum metal matrix composites by means of hot isotropic pressing and vacuum hot pressing. A material model based on micro-mechanical approach then has been presented for the processes. Densification occurs by the inelastic flow of matrix materials during the consolidation, and consequently it depends on many process conditions such as applied pressure, temperature and volume fraction of reinforcement. The model is implemented into finite element software so that the process simulation can be performed enabling the predicted relative density to be compared with experimental data. In order to determine the performance of finished products, further tensile test has been conducted using the developed specimens. The effect of internal void of the materials on mechanical properties therefore can be investigated.

forming of High Density Bevel Gear for Industrial Machinery (산업기계용 고밀도 Bevel Gear 제품화를 위한 성형성 연구)

  • 임성주;윤덕재;최석우;박훈재;김승수;나경환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This study is concerned with the cold forging of sintered preform by rotary forging process and direct powder compacting process. An experiment has been carried out using the rotary powder forging press (500kN) which had been designed and equipped with the rotational conical die inclined to the central axis of the press at certain angle The effect of process variables was observed and measured by several mechanical test, such as hardness distribution density, and microstructure of the specimens. It is found that the highly densified P/M parts can be obtained and this process is very effective for improving quality of the powder products.

  • PDF

Effect of Cold Cyclic Compaction on Densification of $Al_2O_3$ Powder/SiC Whisker Composite ($Al_2O_3$분말과 SiC 휘스커 복합체의 치밀화에 미치는 상온 반복 압축의 영향)

  • 최승완;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.296-302
    • /
    • 1997
  • The effect of cold cyclic compaction on densification of SiC whisker/Al2O3 composite was investigated. Re-lative density of the compact increased as the number of cycle and the compaction pressure increased and the bias pressure decreased. The rate of loading and unloading and the frequency of cold cyclic compaction did not affect much on sliding and rearrangement of the particles. Fracture of SiC whisker was hardly ob-served during cold cyclic compaction and the direction of whisker was randomly oriented throughout the compact regardless of the direction of compaction. Thus, cold cyclic compaction may be an efficient method to densify SiC whisker/Al2O3 composite.

  • PDF