• Title/Summary/Keyword: 분말활성탄소

Search Result 39, Processing Time 0.026 seconds

Effect of Cordycepin-increased Cordyceps militaris Powder on Tissues Lipid Peroxidation and Antioxidative Activity in Carbon Tetrachloride-induced Hepatic Damage in Rats (Cordycepin이 사염화탄소 유발 간손상 흰쥐의 조직 과산화 지질 농도 및 항산화 활성에 미치는 영향)

  • Ahn, Hee-Young;Park, Kyu-Rim;Kim, Yu-Ra;Cha, Jae-Young;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.904-912
    • /
    • 2013
  • This study aimed to evaluate the protective effect of cordycepin-increased Cordyceps militaris strain on carbon tetrachloride ($CCl_4$)-induced hepatotoxicity and oxidative stress in rats. Male Sprague-Dawley rats were randomly divided into five groups (n=6) based on six dietary categories: normal (N), $CCl_4$ control (C), $CCl_4$ plus Paecilomyces japonica (CPJ) (3%, w/w), $CCl_4$ plus C. militaris (CCM) (3%, w/w), and $CCl_4$ plus cordycepin-increased C. militaris ($CCM{\alpha}$) (3%, w/w). The activities of the liver marker enzymes ALT, AST, and LDH and the levels of lipid peroxidation were increased in the $CCl_4$-treated groups, but these parameters were significantly decreased in the $CCM{\alpha}$ group. The TBARS content in the liver homogenate, microsome, and mitochondrial fractions of the C group was significantly elevated compared with the N group. However, in the $CCl_4$-treated groups, $CCM{\alpha}$ group was significantly lowered in the TBARS levels of hepatic homogenate and microsomal fractions. The C group showed a significant decrease in the levels of plasma and hepatic glutathione, whereas they were significantly increased in the $CCM{\alpha}$ group. Accordingly, cordycepin-increased C. militaris may be an ideal animal model for studying hepatoprotective effects.

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 5. Studies on Anti-oxidation Properties of the Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구: 5. 탄소/탄소 복합재료의 내산화성 연구)

  • 박수진;서민강;조민석;이재락
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.237-244
    • /
    • 2000
  • Phenolic resin used as a precursor of carbonized matrix for carbon-carbon composites was modified by addition of molybdenum disilicide (MoSi$_2$) in various concentrations of 0, 4, 12 and 20% by weight to improve the anti-oxidation properties of the composites. The green body was manufactured by a prepreg method and was submitted to carbonization up to 110$0^{\circ}C$. In this work, the oxidation behavior of carbon-carbon composites with MoSi$_2$ as an oxidation inhibitor was investigated at the temperature range of 600-100$0^{\circ}C$ in an air environment. The carbon-carbon composites with MoSi$_2$ showed a significantly improved oxidation resistance due to both the reduction of the porosity formation and the formation of mobile diffusion barrier for oxygen when compared to those without MoSi$_2$. Carbon active sites should be blocked, decreasing the oxidation rate of carbon. This is probably due to the effect of the inherent MoSi$_2$ properties, resulted from a formation of the protective layer against oxygen attack in the composites studied.

  • PDF

CO2 decomposition characteristics of Ba-ferrite powder (Ba-페라이트 분말을 이용한 이산화탄소 분해 특성)

  • Nam, Sung-Chan;Park, Sung-Youl;Jeon, Soon-Kwan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5357-5364
    • /
    • 2011
  • The objective of this study is development of carbon recycle technology which convert carbon dioxide captured from flue gas to carbon monoxide or carbon and reuse in industrial fields. Since carbon dioxide is very stable and difficult to decompose, metal oxide was used as activation agent for the decomposition of carbon dioxide at low temperature. Metal oxides which convert $CO_2$ to CO or carbon were prepared using Ba-ferrite by solid and hydrothermal synthesis. TPR/TPO and TGA were used in this study. The results of TPR by H2 and TPO by $CO_2$ showed that Ba-ferrite powders synthesized by hydrothermal method were better than those by solid method. TGA showed contrary results that reduction of Ba-ferrite powders synthesized using solid method by $H_2$ was 21.96 wt%, oxidation by $CO_2$ was 21.24 wt% and 96.72 wt% of $CO_2$ decomposition efficiency showing excellent oxidation-reduction characteristics at $500^{\circ}C$.

Phase Formation Behavior and Charge-discharge Properties of Carbon-coated Li2MnSiO4 Cathode Materials for Lithium Rechargeable Batteries (리튬이차전지용 탄소 코팅된 Li2MnSiO4 양극활물질의 상형성 거동 및 충방전 특성)

  • Sun, Ho-Jung;Chae, Suman;Shim, Joongpyo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.143-149
    • /
    • 2015
  • Carbon-coated $Li_2MnSiO_4$ powders as the active materials for the cathode were synthesized by planetary ball milling and solid-state reaction, and their phase formation behavior and charge-discharge properties were investigated. Calcination temperature and atmosphere were controlled in order to obtain the ${\beta}-Li_2MnSiO_4$ phase, which was active electrochemically, and the carbon-coated $Li_2MnSiO_4$ active material powders with near single phase ${\beta}-Li_2MnSiO_4$ could be fabricated. The particles of the synthesized powders were secondary particles composed of primary ones of about 100 nm size. The carbon incorporation was essential to enable the Li ions to be inserted and extracted from $Li_2MnSiO_4$ active materials, and the initial capacity of 192 mAh/g could be obtained in the $Li_2MnSiO_4$ active materials with 4.8 wt% of carbon.

Production of Xylanase by Bacillus sp. DSNC 101 (Bacillus sp. DSNC 101에 의한 Xylanase 생산)

  • 조남철
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.344-349
    • /
    • 1997
  • A strain of Bacillus sp. DSNC 101, isolated from soil, produced up to 305.0 units/ml of xylanase when grown on te medium containing 2.0% xylan, 2.0% yeast extract and 0.4% K2HPO4. The strain produced xylanase in the presence of xylan, soluble starch, rice straw, Avicel, maltose, and lactose as a sole carbon source, but the enzyme was not synthesized in the presence of xylose, glucose or arabinose. The crude xylanase preparation did not show hydrolytic activity towards cellulosic substrates and PNPX, a chromogenic substrate for $\beta$-xylosidase. The temperature and pH optima for the xylanase production were 4$0^{\circ}C$ and 8.0, respectively. Xylanase synthesis was repressed by glucose, but not by xylose. The hydrolysis products of xylan catalyzed with the culture filtrate were xylooligosaccharides such as xylobiose and xylotriose but xylose was not detected by tin layer chromatography.

  • PDF

Production and High Temperature Mechanical Properties of Ti-TiC Composite by Reaction Milling (반응밀링법에 의한 Ti-TiC 복합재료의 제조 및 고온 기계적 특성)

  • Jin, Sang-Bok;Choe, Cheol-Jin;Lee, Sang-Yun;Lee, Jun-Hui;Kim, Sun-Guk
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.918-924
    • /
    • 1998
  • This study has been carried out to investigate the effect of reaction milling time on the synthesis of Ti- TiC p powder synthesised from the elemental titanium and activated carbon by reaction milling(RM), and the effect of vacu­u urn hot pressing temperature and TiC volume fraction on microstructural and mechanical properties of Ti- TiC com­p posite $\infty$ns이idated by vacuum hot pressing(VHP).T The elemental powders of titanium and activated carbon can be converted into Ti- TiC composite powders by reac­t tion milling for about 300hours, and were the average grain size of the as- milled powders has been measured to be a about $5\mu\textrm{m}$. The relative density of Ti- TiC VHPed above $1000^{\circ}C$ during Ihr is about 98% and the mechanical properties o of In- situ Ti- TiC composites are improved by TiC particle dispersed uniformly on titanium matrix. In order to investi­g gate thermal stability of Ti- TiC composite, after annealing at $600^{\circ}C$ for 80hrs micro- Vickers hardness have been per­f formed, and the values have been shown little changed as compared with those before annealing. The compact has b been tested on high temperature compressive test at $700^{\circ}C$ and has showed a high temperature compressive strength of 330MPa in a Ti- 20vol% TiC.

  • PDF

Study on Explosion Characteristics and Thermal Stability of Activated Carbon (활성탄의 폭발특성과 열안정성에 관한 연구)

  • Yi-Rac Choi;Dong-Hyun Seo;Ou-Sup Han;Hyo-Geun Cha
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.134-140
    • /
    • 2023
  • Activated carbon is a carbonaceous material mainly used as a gaseous or liquid adsorbent. As fire-related accidents occur consistently due to the accumulation of heat of adsorption and oxidation of volatile organic compounds, the explosive characteristics and thermal stability of powdered and granular activated carbon made from coal and coconut shells were evaluated. As a result of the particle size analysis, the powdered activated carbon was in the particle size range (0.4~3) ㎛, and thermal properties such as exothermic onset temperature and decomposition behavior were analyzed using a differential scanning calorimetry and a thermogravimetric analysis. As a result of the evaluation of the explosion hazards for dust, both coal-based and coconut-based powdered activated carbon are classified as St1 class with weak explosion, but this is a relative and does not mean that the explosion hazards is absolutely low. Therefore, it is necessary to establish countermeasures for reducing the damage.

Characteristics of CO2 Conversion Using Cobalt Ferrite Powders (코발트계 페라이트 분말을 이용한 이산화탄소 전환특성)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1008-1014
    • /
    • 2012
  • The amount of domestic carbon dioxide emissions is more than 600 million tons/year. The emitted $CO_2$ should be captured and stored, however, suitable storage sites have not been found yet. A lot of researches on the conversion of captured carbon dioxide to useful carbon source have been conducted. The purpose of this study is to convert stable carbon dioxide to useful resources using less energy. For this purpose reducing gas and metallic oxide (activator) are required. Hydrogen was used as reducing gas and cobalt ferrite was used as activator. Considering that activator has different physical properties depending on synthesis methods, activator was prepared by hydrothermal synthesis and solid method. Decomposition characteristics of carbon dioxide were investigated using synthesized powders. Temperature programmed reduction/oxidation (TPR/TPO) and thermogravimetric analyzer (TGA) device were used to observe the decomposition characteristics of carbon dioxide. Activator prepared by solid method with 5 and 10 wt% CoO content showed an excellent performance. In TGA experiments with samples prepared by the solid method, reduction by hydrogen was 29.0 wt% and oxidation by $CO_2$ was highest in 27.5 wt%. 95% of adsorbed $CO_2$ was decomposed with excellent oxidation-reduction behaviors.

Hepatoprotective Effects of Semisulcospira libertina and Garlic on the Liver Damage Induced by Carbon Tetrachloride in Rats (다슬기와 마늘이 사염화탄소로 유발된 랫드의 간손상에 미치는 보호효과)

  • 김효정;김광중;전태원;이은실;이영선;한옥경;박무현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.516-520
    • /
    • 2002
  • This study was designed to investigate the hepatoprotective effects of Semisulcospira libertina and garlic on the acute hepatotoxicity induced by carbon tetrachloride (CCl$_4$) of rats. Male Sprague-Dawley rats weighing 200∼220g were pretreated with dehydrated powder of Semisulcospira libertina (2.1 g/kg, po; SL) and dehydrated powder mixture of Semisulcospira libertina and garlic (3g/kg, 7:3 ratio, po; SG) once daily for 3 consecutive days, and then given a single dose of CCl$_4$(1g/kg in 5ml/kg corn oil, po) and liver function was determined 24 hrs later. Liver damage was assessed by quantitating activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), sorbitol dehydrogenase (SDH) and alkaline phosphatase (ALP) as well as by histopathological examination. Pretreatments with SL and SG significantly decleased CCl$_4$-elevated ALT (48% and 61% respectively), AST (32% and 47%) and SDH (51% and 76%), but had no effect on ALP. SL and SG had revealed hepatoprotective effects against CCl$_4$-induced histopathological changes such as severe necrosis, inflammatory cell infiltration and congestion in the central gene of hepatic lobule. These findings demonstrate that SL and SG may haute the hepatoprotective effect on CCl$_4$-induced liver damage.

Improvement of Rate Capability and Low-temperature Performances of Graphite Negative Electrode by Surface Treatment with Copper Phthalocyanine (구리 프탈로시아닌으로 표면처리된 흑연 음극의 속도특성 및 저온성능 개선)

  • Jurng, Sunhyung;Park, Sangjin;Ryu, Ji Heon;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.130-135
    • /
    • 2015
  • The rate capability and low-temperature characteristics of graphite electrode are investigated after surface treatment with copper phthalocyanine (CuPc) or phthalocyanine (Pc). Uniform coating layers comprising amorphous carbon or copper are generated after the treatment. The rate performance of graphite electrodes is enhanced by the surface treatment, which is more prominent with CuPc. The resistance of the graphite electrode estimated from electrochemical impedance spectroscopy and pulse resistance measurement is the smallest for the CuPc-treated graphite. It is likely that the amorphous carbon layer formed by the decomposition of Pc facilitates $Li^+$ diffusion and the metallic copper derived from CuPc improves the electrical conductivity of the graphite electrode.