• Title/Summary/Keyword: 분말입자

Search Result 1,100, Processing Time 0.038 seconds

Review of Copper Trihydroxychloride, a Green Pigment Composed of Copper and Chlorine (구리와 염소 주성분 녹색 안료 코퍼 트리하이드록시클로라이드(Copper Trihydroxychloride)에 대한 고찰)

  • Oh, Joonsuk;Lee, Saerom;Hwang, Minyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.64-87
    • /
    • 2020
  • Copper trihydroxychloride (atacamite, botallackite, paratacamite, etc.), the first green pigment used in Mogao Grotto's mural paintings of China, has been known as "copper green", "green salt", and "salt green", etc. and has been used as an important green pigment with malachite. At first, the natural mineral atacamite was employed, but after the Five Dynasties (907~960 CE), synthetic copper trihydroxychloride was primarily used. In Chinese literature, copper green, green salt, and salt green are recorded as being made via reaction with copper powder, Gwangmyeongyeom (natural sodium chloride), and Yosa (natural ammonium chloride), and the prepared material was analyzed to be copper trihydroxychloride. Copper trihydroxychloride pigment was not found in paintings prior to the Joseon Dynasty (1392~1910 CE) in Korea. In analysis of the green pigments used in paintings and the architectural paintworks in the Joseon Dynasty, copper trihydroxychloride was also shown to have been used as an important green pigment with malachite (Seokrok). In particular, the proportion of copper trihydroxychloride use was high in Buddhist paintings, shamanic paintings, and dancheongs (decorative coloring on wooden buildings). Some of these turned out to be synthetic copper trihydroxychloride, but it is unclear whether the rest of them are synthetic or natural pigments due to a lack of analyzed data. From literature and painting analyses, the pigment name of copper trihydroxychloride in the Joseon Dynasty turns out to be Hayeob, a dark green pigment. It is believed to have first been prepared by learning from China in the early Joseon period (early 15th century) and its use continued until the late 19th century with imported Chinese pigment. Round or oval particles with a dark core of copper trihydroxychloride which were used in Chinese literature were similar to the synthetic copper trihydroxychloride pigments used in the Joseon Dynasty and Chinese paintings. Therefore, the synthetic copper trihydroxychloride pigments of Korea and China are believed to have been prepared in a similar way.

Development of Prediction Model for Capsaicinoids Content in Red-Pepper Powder Using Near-Infrared Spectroscopy - Particle Size Effect (근적외선 스펙트럼을 이용한 고춧가루의 캡사이신 함량 예측 모델 개발 - 입자의 영향)

  • Mo, Changyeun;Kang, Sukwon;Lee, Kangjin;Lim, Jong-Guk;Cho, Byoung-Kwan;Lee, Hyun-Dong
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • In this research, the near-infrared absorption from 1,100-2,300 nm was used to measure the content of capsaicinoids in the red-pepper powder by using the Acousto-optic tunable filters (AOTF) spectrometer with sample plate and sample rotating unit. Non-spicy red-pepper samples from one location (Younggwang-gun. Korea) were mixed with spicy one (var. Chungyang) to make samples separated by particle size (below 0.425 mm, 0.425-0.71 mm, and 0.71- 1.4 mm). The Partial Least Squares Regression (PLSR) model to predict the capsaicinoid content on particle sizes was developed with measured spectra by AOTF spectrometer and used to analyze the amount of capsaicinoids by HPLC. The PLSR Model of red-pepper powder of below 0.425 mm, 0.425-0.71 mm, and 0.71-1.4 mm with cross validation had ${R_V}^2$ = 0.948-0.979 and Standard Error of Prediction (SEP) = 6.56-7.94 mg%. The prediction error of smaller particle size of red-pepper powder was low. The best PLSR model was found in pretreatment of Range Normalization, Standard Normal Variate, and 1st Derivatives of red-pepper powder of below 1.4 mm with cross validation, having ${R_V}^2$ = 0.959 and SEP = 8.82 mg%.

Shelf-life and Quality Characteristics of Tofu Coagulated by Calcium Lactate (젖산칼슘을 응고제로 한 두부의 품질특성과 저장성)

  • 이명예;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.412-419
    • /
    • 2004
  • To investigate the utilization of calcium lactates (CaL) as coagulants for tofu manufacture, the quality characteristics and shelf-life of tofu made by CaL-P (black snail powder) and CaL-A (black snail ash) were investigated and compared to calcium chloride (CC), magnesium chloride (MC), calcium sulfate (CS ) and standard calcium lactate (CaL-S). And also, total microbe and turbidity of the tofu were determined during storage at 1$0^{\circ}C$. Coagulation ability of CaL-A was the highest, and the ability of CaL-P was higher than that of CaL-S. Yield of CaL-A tofu was similar to those of CS and CC tofu, while the yield of CaL-P tofu was 50% compared to that of CC. L* value of CaL-P tofu was lower, but a* and b* values were higher than those of other tofus. The hardness of tofu showed in the order of CaL-S>CS>CC>CaL-P>MC>CaL-A, while the cohesiveness showed in the order of MC>CaL-S>CC>CS>CaL-P>CaL-A. Calcium contents were 57 mg% in MC tofu, 174 mg% in CS tofu, 116 mg% in CaL-S tofu, 95 mg% in CaL-A tofu and 172 mg% in CaL-P tofu. From the results of microscopic observations, the lower hardness showed the more soft and the smaller particle. The particle of CaL-A tofu was small and uniformity but the size of CaL-P and CC tofu showed coarse. Sensory quality of CaL-P and -A tofu were better than the other tofu evaluated by texture, springiness, flavor and overall taste. The shelf-life estimated by total microbe was 4∼6 days in CC, MC, CS, CaL-S and CaL-A tofu, but 8 days in CaL-P tofu at 1$0^{\circ}C$. From the above results, the CaL-P and -A may believe to use as coagulant for tofu manufacture due to its softened taste and enhanced shelf-life, and higher calcium content which has higher absorbability in human body.

Physicochemical Characteristics and Volatile Compounds Analysis of Coffee Brews according to Coffee Bean Grinding Grade (커피원두의 분쇄입도에 따른 커피 추출물의 이화학적 품질특성 및 휘발성 향기성분 분석)

  • Lim, Heung-Bin;Jang, Keum-Il;Kim, Dong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.730-738
    • /
    • 2017
  • In this study, we investigated the physicochemical properties of coffee brews according to coffee bean grinding grade. We also examined the effect of grinding grade on amounts of volatile flavor compounds. Coffee brew samples were separated using standard sieves (with pore sizes of 850, 600, and $425{\mu}m$), making particle sizes of ground beans as follows: whole bean (control), $850{\mu}m$ or more (coarse), $850{\sim}600{\mu}m$ (medium), $600{\sim}425{\mu}m$ (fine), and $425{\mu}m$ or less (very fine). For each particle size category, pH, total acidity, brown color intensity, chromaticity, total phenolic content, caffeine content, chlorogenic acid content, and total amounts of volatile flavor compounds generated were compared and analyzed. As grinding grade decreased, pH and brown color intensity increased from 4.84 to 5.18 and from 0.257 to 0.284, respectively, whereas total acidity decreased from 0.31 to 0.17%. As grinding grade decreased, the $L^*$ and $a^*$ color values decreased; however, $L^*$ value did not exhibit a significant difference depending on the grinding grade. The $b^*$ value was 15.75 in the very fine size category, which showed the highest yellowness. There was an 11 or higher color difference between the control and ground coffee powder, indicating a remarkable color difference. The total phenolic, caffeine, and chlorogenic acid contents of the coffee brewed from ground beans with a very fine size were 4.54 mg gallic acid equivalent/mL, $733.0{\mu}g/mL$, and $383.7{\mu}g/mL$, respectively, which were high values. The total amounts of volatile compounds in the very fine size category were found to be greater than 100 mg/kg. In this study, we suggest the basis for coffee quality evaluation, which involves evaluating changes in the physicochemical properties and amounts of flavor compounds of coffee relative to the grinding grade of the beans (basic step of coffee extraction).

The Density and Strength Properties of Lightweight Foamed Concrete Using Stone-Powder Sludge in Hydrothermal Reaction Condition (수열반응 조건에서 석분 슬러지를 사용한 경량 기포 콘크리트의 밀도와 강도 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Se-Jin;Kim, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.687-693
    • /
    • 2006
  • The Stone Powder Sludge(below SPS) is the by-product from the process that translates stone power of 8mm under as crushed fine aggregate. It is the sludge as like cake that has average particle size of $7{\mu}m$, absorbing water content of 20 to 60%, and $SiO_2$ content of 60% over. Because of high water content of SPS, it is not only difficult to handle, transport, and recycle, but also makes worse the economical efficiency due to high energy consuming to drying. This study is aim to recycle SPS as it is without drying. Target product is the lightweight foamed concrete that is made from the slurry mixed with pulverized mineral compounds and foams through hydro-thermal reaction of CaO and $SiO_2$. Although in the commercial lightweight foamed concrete CaO source is the cement and $SiO_2$ source is high purity silica powder with $SiO_2$ of 90%, we tried to use the SPS as $SiO_2$ source. From the experiments with factors such as foam addition rate and replacement proportion of SPS, we find that the lightweight foamed concrete with SPS shows the same trends as the density and strength of lightweight foamed concrete increases according to decrease of foam addition rate. But in the same condition, the lightweight foamed concrete with SPS is superior strength and density to that with high purity silica. This trends is distinguished according to increase of replacement proportion of SPS, also the analysis of XRF shows that the hydro thermal reaction translates SPS to tobermorite. Although SPS has low $SiO_2$ contents, the lightweight foamed concrete with SPS has superior strength and density, because it reacts well with CaO due to extremely fine particles. We conclude that it is possible to replace the high purity silica as SPS in the lightweight foamed concrete experimentally.

Effect of Crab Shell on Shelf-life Enhancement of Kimchi (게껍질의 김치보존성 향상효과)

  • 김순동;김미향;김일두
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.6
    • /
    • pp.907-914
    • /
    • 1996
  • To enhance the shelf-life and quality of baechu kimchi, the effects of CSP(crab shell powder) addition to kimchi was investigated. Overall qualities were deteriorated by fish odor, chewiness of particles, sharp pH increase at the early fermentation stage; therefore in order to solve these problems kimchi fermentation was carried out with kimchi containing 1, 3, 5% CSPB for salted baech weight at $10^{\circ}C$ for 300ays. Quality of kimchi was evalutated by the measurement of pH, acidity, colour L, a, and b value, the number of microbe and lactic acid bacteria, texture. Ten highly trained panelists were involved in the sensory evaluation. During the entire fermentation periods, pH, hardness, colour L, a and b value, the number of lactic acid bacteria of kimchi with CSPB were higher than those of control, but acidity was lower. Sensory quality showed that sour taste of control at 15-day fermentation was already strong. However, sour taste, crispness taste, and overall taste of kimchi with CSPB untill 20-day fermentation were good. Especially, overall taste of kimchi containing 3% CSPB at 30-day fermentation was good, but that of kimchi containing 5% showed fish odor from the early periods of fermentation.

  • PDF

Evaluation of Denitrification Reactivity by the Supported Nanoscale Zero-Valent Iron Prepared in Ethanol-Water Solution (이중용매에서 제조된 나노영가철을 이용한 질산성질소의 환원반응성 평가)

  • Park, Heesu;Park, Yong-Min;Oh, Soo-Kyeong;Lee, Seong-Jae;Choi, Yong-Su;Lee, Sang-Hyup
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1008-1012
    • /
    • 2008
  • Nanoscale zero-valent iron(nZVI) is famous for its high reactivity originated from its high surface area and it has received considerable attentions as one of the latest innovative technologies for treating contaminated groundwater. Due to its fine powdery form, nZVI has limited filed applications. The efforts to overcome this shortcoming by immobilizing nZVI on a supporting material have been made. This study investigated the differences of resin-supported nZVI's characteristics by changing the preparation methods and evaluated its reactivity. The borohydride reduction of an iron salt was proceeded in ethanol/water solvent containing a dispersant and the synthesis was conducted in the presence of ion-exchange resin. The resulting material was compared to that prepared in a conventional way of using de-ionized water by measuring the phyrical and chemical characteristics. BET surface area and Fe content of nZVI-attached resin was increased from $31.63m^2/g$ and 18.19 mg Fe/g to $38.10m^2/g$ and 22.44 mg Fe/g, respectively, by switching the solution medium from water to ethanol/water with a dispersant. The reactivity of each material was tested using nitrate solution without pH control. The pseudo first-order constant of $0.462h^{-1}$ suggested the reactivity of resin-supported nZVI prepared in ethanol/water was increased 61 % compared to that of the conventional type of supported nZVI. The specific reaction rate constant based on surface area was also increased. The results suggest that this new supported nZVI can be used successfully in on-site remediation for contaminated groundwater.

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.

The Effect of Chemical Composition and Sintering Temperature on the Experiment of Physical Properties of Ni-Zn Ferrite (Ni-Zn Ferrite의 조성성분 및 소결온도에 따른 물리적 특성의 실험적 연구)

  • Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.255-260
    • /
    • 2006
  • The basic composition of Ni-Zn ferrite was $(Ni_{0.35}Cu_{0.2}Zn_{0.45})_{1.02}(Fe_2O_3)_{0.98}$ (group A) and $(Ni_{0.4}Cu_{0.2}Zn_{0.4})_{1.02}(Fe_2O_3)_{0.98}$(group B) with additional 0.1 mol% $CaCO_3$ and 0.03 mol% $V_2O_5$. For high permeability and acceleration of grain growth, $CaCO_3$ and $V_2O_5$ was added. The mixture of the law materials was calcinated at $600^{\circ}C$ for 2 hours and then milled. The compacts of toroidal type were sintered at different temperature ($1,050^{\circ}C,\;1,070^{\circ}C,\;1,100^{\circ}C$) for 2 hours in air followed by an air cooling. Then, effects of various composition and sintering temperatures on the microstructure and physical properties such as density, resistivity, magnetic induction, coercive force, initial permeability, quality factor, and curie temperature of the Ni-Zn ferrite were investigated. The density of the Ni-Zn ferrite was $4.90{\sim}5.10g/cm^3$, resistivity revealed $10^8{\sim}10^{12}{\Omega}-cm$. The average grain size increased with the increase of sintering temperatures. The magnetic properties obtained from the aforementioned Ni-Zn ferrite specimens were 4,000 gauss for the maximum induction, 0.25 oersted for the coercive force, 2,997 for the initial permeability, 208 for the quality factor, and $202^{\circ}C$ for the curie temperature. The physical properties indicated that the specimens could be utilized as the core of microwave communication and high permeability deflection yoke of high permeability.

Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea (경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 1975
  • Wet chemical analysis (for $MnO_2$, MnO, and $H_2O$(+)) and electron microprobe analysis (for $Fe_2O_3$ and PbO) give $MnO_2$ 74.91, MnO 11.33, $Fe_2O_3$ (total Fe) 4.19, PbO 0.03, $H_2O$ (+) 9.46, sum 99.92%. 'Available oxygen determined by oxalate titration method is allotted to $MnO_2$ from total Mn, and the remaining Mn is calculated as MnO. Traces of Ba, Ca, Mg, K, Cu, Zn, and Al were found. Li and Na were not found. The existence of (OH) is verified from the infrared absorption spectra. The analysis corresponds to the formula $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$, on the basis of O=14, 'or ideally $Mn^{4+}{_{5-x}}(Mn^{2+},Fe^{3+})_{1+x}O_{8}(OH)_{6}$ ($x{\approx}0.2$). X-ray single crystal study could not be made because of the distortion of single crystals. But the x-ray powder pattern is satisfactorily indexed by an orthorhombic cell with a 9.324, b 14.05, c $7.956{\AA}$., Z=4. The indexed powder diffraction lines are 9.34(s) (100), 7.09(s) (020), 4.62(m) (200, 121), 4.17(m) (130), 3.547(s) (112), 3.212(vw) (041), 3.101(s) (300), 2.597(w) (013), 2.469(m) (331), 2.214(vw)(420), 2.098(vw) (260), 2.014 (vw) (402), 1.863(w) (500), 1.664(w) (314), 1.554(vw) (600), 1.525(m) (601), 1.405(m) (0.10.0). DTA curve shows the endothermic peaks at $250-370^{\circ}C$ and $955^{\circ}C$. The former is due to the dehydration: and oxidation forming$(Mn,\;Fe)_2O_3$(cubic, a $9.417{\AA}$), and the latter is interpreted as the formation of a hausmannite-type oxide (tetragonal, a 5.76, c $9.51{\AA}$) from $(Mn,\;Fe)_2O_3$. Infrared absorption spectral curve shows Mn-O stretching vibrations at $515cm^{-1}$ and $545cm^{-1}$, O-H bending vibration at $1025cm^{-1}$ and O-H stretching vibration at $3225cm^{-1}$. Opaque. Reflectance 13-15%. Bireflectance distinct in air and strong in oil. Reflection pleochroism changes from whitish to light grey. Between crossed nicols, color changes from yellowish brown with bluish tint to grey in air and yellowish brown to grey through bluish brown in oil. No internal reflections. Etching reactions: HCl(conc.) and $H_2SO_4+H_2O_2$-grey tarnish; $SnCl_2$(sat.)-dark color; $HNO_3$(conc.)-grey color; $H_2O_2$-tarnish with effervescence. It is black in color. Luster dull. Cleavage one direction perfect. Streak brownish black to dark brown. H. (Mohs) 2-3, very fragile. Specific gravity 3.59(obs.), 3.57(calc.). It occurs as radiating groups of flakes, flower-like aggregates, colloform bands, dendritic or arborescent masses composed of fine grains in the cementation zone of the supergene manganese oxide deposits of the Janggun mine, Bonghwa-gun, southeastern Korea. Associated minerals are calcite, nsutite, todorokite, and some undetermined manganese dioxide minerals. The name is for the mine, the first locality. The mineral and name were approved before publication by the Commission on New Minerals and Mineral Names, I.M.A.

  • PDF